Определения, 2 семестр, Кохась К.П.
* - ТРЕБУЕТ ДОРАБОТКИ
Содержание
- 1 2 семестр
- 1.1 1. Ряды Тейлора основных элементарных функций
- 1.2 2. Локальный экстремум
- 1.3 3. Точка возрастания функции
- 1.4 4. Критическая точка
- 1.5 5. Выпуклая функция
- 1.6 6. Выпуклое множество в [math] R^m [/math]
- 1.7 7. Надграфик и подграфик
- 1.8 8. Опорная прямая
- 1.9 9. Первообразная
- 1.10 10. Таблица первообразных
- 1.11 11. Дробление отрезка
2 семестр
1. Ряды Тейлора основных элементарных функций
2. Локальный экстремум
Пусть функция ƒ(x) определена в некоторой окрестности ε = (х0 - δ, x0 + δ), δ>0 , некоторой точки x0. 1.) Точка x0 называется точкой локального максимума, если в некоторой такой окрестности ε выполняется неравенство ƒ(x) ≤ ƒ(х0) , ∀x < ε 2.) Точка x0 называется точкой локального минимума, если в некоторой такой окрестности ε выполняется неравенство ƒ(x) ≥ ƒ(х0) , ∀x < ε Понятия локальный максимум и локальный минимум объединяются термином локальный экстремум.
3. Точка возрастания функции
4. Критическая точка
Критической точкой дифференцируемой функции называется точка, в которой все её частные производные обращаются в нуль.
5. Выпуклая функция
Выпуклая функция — функция, у которой надграфик является выпуклым множеством.
Вещественнозначная функция, определённая на некотором интервале (в общем случае на выпуклом подмножестве некоторого векторного пространства) выпукла, если для любых двух значений аргумента
, и для любого числа выполняется неравенство Йенсена:6. Выпуклое множество в
Множество (область)
называется выпуклым, если из того, что и следует, что для [0,1]. Другими словами, G - выпуклое множество, если оно, вместе с любыми двумя своими точками, содержит в себе отрезок, соединяющий эти точки.7. Надграфик и подграфик
Пусть f(x) определена на некотором интервале. Тогда множество y≥f(x), где х принадлежит интервалу, называется надграфиком, а множество y<f(x), где x принадлежит интервалу, — подграфиком. Слова ужасные, но любого человека cпроси — ему будет ясно, что имеется в виду.
8. Опорная прямая
Опорная прямая к плоскому множеству M в его точке P – это такая прямая, проходящая через P, что множество M лежит целиком в одной (замкнутой) полуплоскости, ограниченной этой прямой. Касательная к окружности, прямая, содержащая любую сторону выпуклого многоугольника, прямая, проходящая через вершину многоугольника и не имеющая с ним других общих точек, – примеры опорных прямых к указанным фигурам. Понятие опорной прямой играет важную роль в теории выпуклых множеств.
9. Первообразная
Первообра́зной или примити́вной функцией (иногда называют также антипроизводной) данной функции f называют такую F, производная которой (на всей области определения) равна f, то есть F ′ = f. Вычисление первообразной заключается в нахождении неопределённого интеграла, а сам процесс называется интегрированием.