Участник:Muravyov
Версия от 10:30, 27 апреля 2012; Muravyov (обсуждение | вклад)
Триангуляция полигона — декомпозиция многоугольника
на множество треугольников, внутренние области которых попарно не пересекаются и объединение которых в совокупности составляет . В строгом смысле слова, эти треугольники могут иметь вершины только в вершинах исходного многоугольника.Простым многоугольником является односвязная фигура, стороны которой не пересекаются.
Теорема (О существовании триангуляции полигона): |
У любого простого -вершинного многоугольника существует триангуляция, причём количество треугольников в ней . |
Доказательство: |
Доказательство ведётся индуктивно по | . При теорема тривиальна. Рассмотрим случай при и предположим, что теорема выполняется при всех . Докажем существование диагонали в многоугольнике . Возьмём самую левую вершину многоугольника и две смежных с ней вершины и . Если отрезок принадлежит внутренней области — мы нашли диагональ. В противном случае, во внутренней области треугольника или на самом отрезке содержится одна или несколько вершин . Выберем самую наиболее далеко отстоящую от вершину . Отрезок, соединяющий и не может пересекать сторон , поскольку в противном случае одна из вершин это отрезка будет располагаться дальше от , чем . Это противоречит условию выбора . В итоге получаем, что — диагональ.