Теоретико-числовые функции

Материал из Викиконспекты
Версия от 05:14, 13 сентября 2010; 192.168.0.2 (обсуждение) (Функция Эйлера)
Перейти к: навигация, поиск
Эта статья находится в разработке!

Мультипликативность функции

Функция [math] \theta (a) [/math] называется мультипликативной, если выполнены следующие условия:

  • 1. Функция [math] \theta (a) [/math] определена для всех целых положительных a и не обращается в 0 хотя бы при одном таком a
  • 2. Для любых положительных взаимно простых [math] a_1 [/math] и [math] a_2 [/math] имеем [math] \theta(a_1 a_2) = \theta(a_1)\theta(a_2) [/math]

Функция Эйлера

Функция Эйлера [math]\varphi (a) [/math] определяется для всех целых положительных a и представляет собою число чисел ряда [math]0, 1, \ldots, a-1 [/math], взаимно простых с a.

Примеры:

[math] \varphi (1) = 1[/math], [math] \varphi (4) = 2[/math],
[math] \varphi (2) = 1[/math], [math] \varphi (5) = 4[/math],
[math] \varphi (3) = 2[/math], [math] \varphi (6) = 2[/math].

Свойства функции Эйлера

  • 1. Пусть [math] a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}[/math] - каноническое разложение числа a, тогда

[math] \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})[/math]

  • 2. Из свойства 1, очевидно, следует, что при [math] (a_1 \text{, } a_2 ) = 1 [/math] выполняется [math] \varphi(a_1 a_2) = \varphi(a_1)\varphi(a_2) [/math]. То есть функция Эйлера является мультипликативной.

Количество делителей

Функция Мёбиуса

Функция Мёбиуса [math] \mu (a) [/math] определяется для всех целых положительных a. Она задается равенствами:

  • [math] \mu (a) = 0 [/math], если a делится на квадрат, отличный от 1.
  • [math] \mu (a) = {(-1)}^k [/math], если a не делится на квадрат, где k - число простых делителей a.

Свойства

  • 1. Функция Мёбиуса мультипликативна.
  • 2. Сумма значений функции Мёбиуса по всем делителям целого числа n, не равного единице, равна нулю
[math]\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n\gt 1.\end{cases}[/math]