Дополнительный, самодополнительный граф

Материал из Викиконспекты
Перейти к: навигация, поиск
Эта статья находится в разработке!
nothumb
НЯ!
Эта статья полна любви и обожания.
Возможно, стоит добавить ещё больше?

Дополнительный граф

<wikitex>

Определение:
Пусть дан граф $G<V, E>$. Дополнительным графом к $G$ называется граф $G_1<V, \overline{E}>$, то есть граф с вершинами из $V$ и всеми ребрами из $E$, которые не вошли в $G$.


ПРИМЕР: ТУТ БУДЕТ КАРТИНКА

временная картинка

Теорема:
Дополнительный граф к дополнительному графу $G$ есть граф $G$.
Доказательство:
[math]\triangleright[/math]
$\overline{\overline{G<V, E>
[math]\triangleleft[/math]
= \overline{G_1<V, \overline{E}>} = G_2<V, \overline{\overline{E}}> = G_2<V, E> = G$

}}

Теорема:
Дополнительный граф к несвязному графу связен.
Доказательство:
[math]\triangleright[/math]

Для графа с одной вершиной утверждение очевидно. Докажем его для остальных графов.

Пусть $G$ - данный граф. Рассмотрим произвольные вершины $v$ и $u$ из $G$. Возможны два случая.

  • $v$ и $u$ лежат в разных компонентах связности $G$.

Тогда ребро $(u, v) \notin G \Rightarrow (u, v) \in \overline{G} \Rightarrow u$ и $v$ лежат в одной компоненте связности $\overline{G}$.

временная картинка







  • $v$ и $u$ лежат в разных компонентах связности $G$.

$G$ — несвязный $\Rightarrow \exists w \in G$, не лежащая в одной компоненте связности с $v$ и $u$. Тогда по предыдущему пункту $(v, w) \in \overline{G}$ и $(u, w) \in \overline{G} \Rightarrow v$ и $u$ лежат в одной компоненте связности $\overline{G}$.

временная картинка








То есть $\forall u, v \in V u$ и $v$ лежат в одной компоненте связности $\overline{G}$, то есть $\overline{G}$ связен.
[math]\triangleleft[/math]


</wikitex>