Эта статья находится в разработке!
Все рассматриваемые здесь функции действуют из подмножества [math] \mathbb {N}^t [/math] в [math] \mathbb {N} [/math], где [math] t [/math] - любое натуральное число.Также будем считать что [math] 0[/math] натуральное число.
Примитивно рекурсивные функции
Основные определения
Рассмотрим следующие правила преобразования функций:
- Рассмотрим [math] k [/math]-местную функцию [math] f(x_1,\ldots,x_k) [/math] и [math] k [/math] [math]n [/math]-местных функций [math] g_i(x_1,x_2,\ldots,x_n) [/math]. Тогда после преобразования у нас появится [math] n [/math] - местная функция [math] F = f(g_1(x_1,\ldots,x_n),\ldots, g_k(x_1,\ldots,x_n)) [/math].
- Это правило называется правилом подстановки
- Рассмотрим [math] k [/math]-местную функцию [math] f [/math] и [math] k + 2 [/math]-местную функцию [math] h [/math]. Тогда после преобразования у нас будет [math] k+1 [/math] -местная функция [math] g [/math], которая определена следующим образом:
- [math]g(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)[/math]
- [math]g(x_1,\ldots,x_n,y+1)=h(x_1,\ldots,x_n,y,g(x_1,\ldots, x_n,y))[/math]
- Это правило называется правилом рекурсии,при этом будем говорить что рекурсия запускается по аргументу [math] y [/math].
Определение: |
Примитивно рекурсивными называют функции, которые можно получить с помощью правил подстановки и рекурсии из константной функции [math] \textbf 0 [/math], функции [math] I(x) = x + 1, [/math] и набора функций [math] P_{n,k}(x_1,\ldots,x_n) = x_k,[/math] где [math] k \le n [/math]. |
Заметим, что если [math] f [/math] — [math] n [/math]-местная примитивно рекурсивная функция, то она определена на всем множестве [math] \mathbb {N}^{n} [/math], так как [math] f [/math] получается путем правил преобразования из всюду определенных функций, и правила преобразование не портят всюду определенность. Говоря неформальным языком, рекурсивные функции напоминают программы, у которых при любых входных данных все циклы и рекурсий завершатся за конечное время.
Благодаря проекторам мы можем делать следующие преобразования:
- В правиле подстановки можно использовать функции с разным числом аргументов. Например, подстановка [math] F(x,y) = f(g(y),h(x,x,y)) [/math] эквивалентна [math] F(x,y,z) = f(g(P_{2,2}(x,y)),h(P_{2,1}(x,y),P_{2,1}(x,y),P_{2,2}(x,y))) [/math], но если [math] F [/math] не константная функция то все подставляемые функции должны иметь хотя бы один аргумент.
- В рекурсии не обязательно вести индукцию по последнему аргументу. Следует из того что мы можем с помощью проекторов поставить требуемый аргумент на последнее место.
В дальнейшем вместо [math] P_{n,k}(x_1,\ldots,x_k) [/math] будем писать просто [math] x_k [/math], подразумевая требуемое нам [math] n [/math].
Арифметические операции на примитивно рекурсивных функциях
n -местный ноль
[math] \textbf 0 [/math] - функция нуля аргументов.
Выразим сначала [math] \textbf 0^1 [/math]
[math] \textbf 0^{1}(0) = \textbf 0 [/math]
[math] \textbf 0^{1}(y+1) = h(y,\textbf 0^{1}(y)) [/math], где [math] h(x,y) = y [/math]
Теперь выразим [math] \textbf 0^n [/math]
[math] \textbf 0^{n}(x_1,\ldots,x_{n-1},0) = \textbf 0^{n-1} [/math]
[math] \textbf 0^{n}(x_1,\ldots,x_{n-1},y+1) = h(x_1,\ldots,x_{n-1},\textbf 0^{n}(y)) [/math], где [math] h(x_1,\ldots, x_n,y) = y [/math]
Константа [math] \textbf M [/math] равна [math] I(\textbf{M-1}) [/math]
[math] \textbf M^n [/math] - n местная константа, получается аналогичным к [math] \textbf 0^n [/math] образом.
Сложения
[math] sum(x,0) = x [/math]
[math] sum(x,y+1) = h(x,y,sum(x,y)) [/math] , где [math] h(x,y,z)=I(z) [/math]
Умножения
[math] prod(x,0) = \textbf 0^1(x) [/math]
[math] prod(x,y+1) = h(x,y,prod(x,y)) [/math], где [math] h(x,y,z)=sum(x,z) [/math]
Вычитания
Если [math] x \lt y [/math], то [math] sub(x,y) = 0 [/math] , иначе [math] sub(x,y) = x - y [/math].
Рассмотрим сначала вычитания единицы [math] sub_{1}(x) = x - 1 [/math]
[math] sub_1(0) = \textbf 0 [/math]
[math] sub_1(x+1) = h(x,sub_1(x)) [/math], где [math] h(x,y) = y [/math]
Теперь рассмотрим [math] sub(x,y) [/math]
[math] sub(x,0) = x [/math]
[math] sub(x,y+1) = h(x,y,sub(x,y)) [/math], где [math] h(x,y,z) =sub_1(z) [/math]
Операции сравнения
[math] eq(x,y) = 1 [/math] если [math] x = y [/math], иначе [math] eq(x,y) = 0 [/math]
[math] le(x,y) = 1 [/math] если [math] x \le y [/math], иначе [math] lq(x,y) = 0 [/math]
[math] lower(x,y) = 1 [/math] если [math] x \lt y [/math], иначе [math] lower(x,y) = 0 [/math]
Сначала выразим [math] eq_{0}(x) = eq(x,0) [/math]
[math] eq_0(0) =I(\textbf 0) [/math]
[math] eq_0(y+1) = h(y,eq(y)) [/math] , где [math] h(y,eq(y)) = \textbf 0^2(x,y) [/math]
Теперь все остальные функции
[math] le(x,y) = eq_0(sub(x,y)) [/math]
[math] eq(x,y) = mul(le(x,y),le(y,x)) [/math]
[math] lower(x,y) = mul(le(x,y),le(I(x),y)) [/math]
IF
[math] if(0,x,y) = y [/math]
[math] if(c+1,x,y) = h(c,x,y,if(c,x,y)) [/math] , где [math] h(c,x,y,d) = x [/math]
Деление
[math] divide(x,y) = \lfloor {\frac{x}{y}} \rfloor [/math], если [math] y \gt 0 [/math]. Если же [math] y = 0 [/math], то [math] divide(x,0) [/math] и все связанные с делением функции равны каким то ,не интересными для нас, числами.
Сначала определим [math] divmax(x,y) [/math] — функция равна максимальному числу меньшему [math] x [/math] и которое нацело делится на [math] y [/math].
[math] divmax(0,y) =\textbf 0^{1} [/math]
[math] divmax(x+1,y) = h(x,y,divmax(x,y)) [/math],
где [math] h(x,y,z) = if(eq(sub(I(x),z),y),I(x),z) [/math],
или не формально если [math] x+1 - y = z [/math] то [math] h(x,y,z) = x+1 [/math], иначе [math] h(x,y,z) = y [/math]
Теперь само деления
[math] divide(0,y) =\textbf 0^{1} [/math]
[math] divide(x,y) = h(x,y,divide(x,y)) [/math], где [math] h(x,y,z) = sum(z,eq(I(x),divmax(I(x),y))) [/math]
или не формально если [math] x+1~\vdots z [/math] то [math] h(x,y,z) = z+1 [/math], иначе [math] h(x,y,z) = z [/math]
Остаток от деления выражается так:
[math] mod(x,y) = sub(x,mul(y,divide(x,y))) [/math]
Работа со списками фиксированной длины
С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск [math] n [/math] - того простого числа.
Рассмотрим список из натуральны чисел [math] [x_1,\ldots,x_n] [/math], тогда ему в соответствия можно поставить число [math] p_1^{x_1+1} \cdot p_2^{x_2+1} \cdot \ldots \cdot p_n^{x_n+1} [/math], где [math] p_i - i[/math]-тое простое число. Как видно из представления,создания списка, взятие [math] i [/math] - того
элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел.
Теорема о примитивной рекурсивности вычислимых функций
Теорема о рекурсии
Теорема (О рекурсии): |
Пусть [math]V(n, x)[/math] — вычислимая функция. Тогда найдётся такая вычислимая [math]p[/math], что [math]\forall y[/math] [math]p(y) = V(p, y)[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Приведем конструктивное доказательство теоремы.
Пусть есть вычислимая [math]V(x,y)[/math]. Будем поэтапно строить функцию [math]p(y)[/math]. Предположим, что у нас в распоряжении есть функция [math]getSrc()[/math], которая вернет код [math]p(y)[/math]. Тогда саму [math]p(y)[/math] можно переписать так:
p(y){
V(x,y) {...}
main() {
return V(getSrc(), y)
}
string getSrc() {...}
}
Теперь нужно определить функцию [math]getSrc()[/math]. Предположим, что внутри [math]p(y)[/math] мы можем определить функцию [math]getOtherSrc()[/math], состоящую из одного оператора [math]return[/math], которая вернет весь предшествующий ей код. Тогда [math]p(y)[/math] перепишется так.
p(y){
V(x,y) {...}
main() {
return V(getSrc(), y)
}
string getSrc() {
string src = getOtherSrc();
return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}";
}
string getOtherSrc() {...}
}
Теперь [math]getOtherSrc()[/math] определяется очевидным образом, и мы получаем итоговую версию функции [math]p(y)[/math]
p(y){
V(x,y) {...}
main() {
return V(getSrc(), y)
}
string getSrc() {
string src = getOtherSrc();
return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}";
}
string getOtherSrc() {
return " p(y){ // Возвращаем весь предыдущий код
V(x,y) {...}
main() {
return V(getSrc(), y)
}
string getSrc() {
string src = getOtherSrc();
return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}";
}";
}
}
|
[math]\triangleleft[/math] |
Если говорить неформально, теорема о рекурсии утверждает, что внутри программы можно использовать ее код. Это упрощает доказательство некоторых теорем.
Приведем так же альтернативую формулировку теоремы и альтернативное (неконструктивное) доказательство.
Теорема (о неподвижной точке, Клини): |
Пусть [math]U[/math] — универсальная функция, [math]h[/math] — всюду определённая вычислимая функция. Тогда найдется такое [math]n[/math], что [math]U_n=U_{h(n)}[/math].
Другими словами: нельзя найти алгоритма, преобразующего про-
граммы, который бы по каждой программе давал другую (не эквива-
лентную ей). |
Доказательство: |
[math]\triangleright[/math] |
Начнём с доказательства леммы.
Лемма: |
Пусть на натуральных числах задано отношение эквивалентности [math]\equiv[/math]. Тогда следующие два утверждения не могут быть выполнены одновременно:
- Пусть [math]f[/math] — вычислимая функция. Тогда существует всюду определённое вычислимое [math]\equiv[/math] — продолжение [math]g[/math] функции [math]f[/math], то есть такая [math]g[/math], что [math]D(g)=N[/math] и [math]\forall x[/math] такого, что [math]f(x) \ne \perp[/math], выполнено [math]f(x) \equiv g(x)[/math].
- Найдётся такая всюду определенная вычислимая [math]h[/math], что [math]\forall n [/math] выполнено [math]h(n) \not\equiv n[/math].
|
Доказательство: |
[math]\triangleright[/math] |
Приведем доказательство от противного. Пусть оба утверждения выполнены.
Определим функцию [math]f[/math] так: [math]f(x)=U(x,x)[/math]. Заметим, что никакая всюду вычислимая функция не отличается от [math]f[/math] всюду. Согласно первому утверждению найдётся всюду определённое вычислимое [math]\equiv[/math] — продолжение [math]g[/math] функции [math]f[/math]. Определим функцию [math]t[/math] так: [math]t(x)=h(g(x))[/math], где [math]h[/math] — функция из второго утверждения. Если [math]f(x) \ne \perp[/math], то [math]f(x)=g(x) \ne h(g(x))=t(x)[/math], то есть [math]f(x) \ne t(x)[/math]. Если [math]f(x)= \perp[/math], то [math]f(x) \ne t(x)[/math], так как [math]t[/math] всюду определена. Значит, [math]f[/math] всюду отлична от [math]t[/math], получили противоречие. | [math]\triangleleft[/math] |
Теперь определим отношение [math]\equiv[/math] так: [math]x \equiv y \Leftrightarrow U_x = U_y[/math]. Покажем, что для него выполнено первое утверждение леммы. Для заданной [math]f[/math] определим [math]V(n,x) = U(f(n), x)[/math]. Так как [math]U[/math] — универсальная функция, то найдётся такая всюду определенная вычислимая функция [math]s[/math], что [math]V(n,x) = U(s(n), x)[/math]. Тогда [math]\forall x [/math] и [math] n [/math] будет выполнено [math]U(f(n), x) = U(s(n), x)[/math]. Значит, [math]\forall n [/math] [math] s(n) \equiv f(n)[/math], то есть [math]s[/math] — всюду определенное [math]\equiv[/math] — продолжение [math]f[/math].
Значит, для нашего отношения эквивалентности второе утверждение леммы не верно, то есть для любого вычислимого всюду определенного [math]h[/math] [math] \exists n[/math] такое, что [math]U_{h(n)} = U_n[/math]. |
[math]\triangleleft[/math] |