Компактный оператор

Материал из Викиконспекты
Перейти к: навигация, поиск


Определение:
Линейный ограниченный оператор [math] A : X \to Y [/math] называется компактным,

если [math] A [/math] переводит любое ограниченное множество из [math] X [/math]

в относительно компактное множество из [math] Y [/math].



TODO: определение относительно компактного множества

Из определения ясно, что мы получаем усиление ограниченности, так как любое относительно компактное множество — ограничено.

Пример

Рассмотрим пространство [math] C[0,1] [/math]. Пусть [math] K(u, v) [/math] — непрерывно на [math] [0,1]\times[0,1] [/math] и ограничено: [math] | K(t,s) | \leq M [/math].

[math] A(x,t) = \int\limits_0^1 K(t,s) x(s) ds [/math], где [math] x(s) \in C[0,1] [/math].

[math] A(x,t) \in C[0,1] [/math]. Зададим норму [math] \| x \| = \max\limits_{s \in [0,1]} | x(s) | \implies |x(s)| \leq \| x \| [/math]

[math] | A(x,t) | \leq M \cdot \| x \| [/math]

[math] \| A(x,t) \| \leq M \cdot \| x \| [/math]

Критерий проверки компактности

Произведение компактных операторов

TODO: к чему относиться следующий абзац???

[math] T \subset C[0,1] [/math] — относительно компактное [math]\iff[/math]

  1. [math] \forall x \in T : \|x\| \leq M [/math]
  2. [math] \forall \varepsilon \gt 0 \ \exists \delta \gt 0 : | t'' - t' | \lt \delta \implies \forall x \in T : | x(t') - x(t'') | \lt \varepsilon [/math]равностепенная непрерывность.
Утверждение:
[math] A \in \mathcal{L} (X,Y), ~ B \in \mathcal{L} (Y,Z) [/math]

[math] C = B \cdot A [/math] (произведение, суперпозиция).

  1. Если [math] B [/math] ­— ограниченный, [math] A [/math] ­— компактный, то [math] C [/math] ­— компактный.
  2. Если [math] B [/math] ­— компактный, [math] A [/math] ­— ограниченный, то [math] C [/math] ­— компактный.