Участник:Shersh/Теорема о рекурсии
Содержание
Неразрешимость универсального языка
Считаем, что язык программ над тем же алфавитом, что и язык входных данных. Если это не так, то можно просто взять объединение алфавитов, это ничто не испортит.
Универсальная программа: .
Универсальный язык:
| Утверждение: |
Универсальный язык неразрешим |
|
Напишем такую программу:
p(x):
if u(p, x) // можем так написать, потому что по теореме о рекурсии программа может знать свой код
return 0
else
return 1
Если , тогда программа на входе возвращает , но по условию она должна вернуть 0, а следовательно, не принадлежит универсальному языку. Если же , то мы пойдём во вторую ветку условного оператора и вернём , значит, пара принадлежит универсальному языку, но , значит, пара не принадлежит. Опять получили противоречие. |
Теорема Успенского-Райса
Колмогоровская сложность
| Определение: |
| Колмогоровской сложностью строки называется функция , которая равна минимальной длине программы . |
Пример
Колмогоровская сложность программы, выводящей нулей . Просто программа, в которой записано нулей. Но можно записать и более короткую программу для больших , например вот такую:
():
for i = 1..n
print(0)
| Теорема (Невычислимость Колмогоровской сложности): |
Колмогоровская сложность — невычислимая функция. |
| Доказательство: |
|
, если только или — невычислима. Допустим, что вычислима, тогда напишем такую программу:
p(): foreach x // перебираем слова по возрастанию длины if print(x) exit Начиная с , . |