Материал из Викиконспекты
Замыкание
Определение: |
Пусть [math]M =\; \langle X,I \rangle[/math] — матроид. Тогда замыкание (closure) множества [math]A \subseteq X[/math] — это множество [math]\langle A \rangle \subseteq X[/math] такое, что [math]\langle A \rangle = A \cup \mathcal {f} x \in X \; |\; \exists H \subseteq A :\ H \in I ,\; H \cup x \notin I \mathcal {g}[/math] |
Лемма: |
Пусть [math]M =\; \langle X,I \rangle[/math] — матроид, [math]A \subseteq X[/math]. Тогда [math]r(A) = r(\langle A \rangle),[/math] где [math]r[/math] — ранг. |
Доказательство: |
[math]\triangleright[/math] |
Пусть существуют множества [math]B, D \in I:\ B \subseteq A,\ D \subseteq \langle A \rangle,\ |B| = r(A) \lt r(\langle A \rangle) = |D|.[/math] Тогда по аксиоме замен[1] [math]\exists p \in D \setminus B :\ B \cup p \in I.[/math] Так как [math]B[/math] — максимальное независимое множество из [math] A [/math], то [math]p \notin A,[/math] то есть [math] p \in \langle A \rangle \setminus A. [/math] Согласно определению замыкания возьмём максимальное по мощности множество [math]H \subseteq A:\ H \in I,\ H\cup p \notin I.[/math] Поскольку [math] |H| \leqslant |B| \lt |B \cup p|,[/math] то по аксиоме замены существует [math]q \in (B \cup p)\setminus H :\ H \cup q \in I.[/math]
Если [math]q \in B,[/math] то [math](H \cup q) \subseteq A,\ [/math] но [math] (H \cup q) \cup p \notin I [/math] в силу [math] H \cup p \notin I [/math] (противоречие с максимальностью множества [math]H[/math]). Если [math]q = p,[/math] то [math](H \cup p) \in I[/math] (противоречит выбору множества [math]H[/math]). |
[math]\triangleleft[/math] |
Теорема: |
Оператор замыкания для матроидов обладает следующими свойствами:
- [math]A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle[/math]
- [math]q \notin \langle A \rangle,\; q \in \langle A \cup p \rangle \Rightarrow p \in \langle A \cup q \rangle[/math]
- [math]\langle \langle A \rangle \rangle = \langle A \rangle [/math]
|
Доказательство: |
[math]\triangleright[/math] |
- Положим [math]x \in \langle A \rangle.[/math] В соответствии с определением оператора замыкания есть 2 случая:
- [math] x \in A. [/math] Тогда [math] x \in B [/math], и следовательно [math] x \in \langle B \rangle. [/math]
- [math]\exists H \subseteq A :\ H \in I,\ H \cup x \notin I.[/math] Для такого [math] H [/math] также верно [math]H \subseteq B,[/math] потому [math]x \in \langle B \rangle.[/math]
- Опять два случая:
- [math] q \in A \cup p. [/math] Зная, что [math] q \notin \langle A \rangle, [/math] приходим к [math] q = p, [/math] чего нам более чем достаточно.
- [math] \exists H \subseteq A \cup p :\ H \in I,\ H \cup q \notin I. [/math]
- Заметим, что [math] p \in H [/math], иначе бы [math] H [/math] подходило для [math] q \in \langle A \rangle, [/math] поэтому запишем имеющееся у нас иначе, положив [math] H' = H \setminus p: [/math]
- [math] \exists H' \subseteq A:\ H' \cup p \in I,\ H' \cup p \cup q \notin I. [/math]
- [math] H' \cup q \in I [/math], в противном случае в силу [math] H' \in I [/math] было бы [math] q \in \langle A \rangle. [/math]
- Как видим, множество [math] H' \cup q [/math] подходит под определение [math] p \in \langle A \cup q \rangle. [/math]
- Из определения понятно, что [math] \langle A \rangle \subseteq \langle \langle A \rangle \rangle [/math]. Предположим [math]\exists p \in \langle \langle A \rangle \rangle \setminus \langle A \rangle.[/math] Возьмем максимальное по мощности множество [math]B \in I :\ B \subseteq A.[/math] Так как [math]p \notin \langle A \rangle,[/math] то по определению замыкания [math]B \cup p \in I.[/math] Тогда, последовательно применив вышеуказанную лемму, дважды определение ранга и снова лемму, получим [math]r(\langle A \rangle) = r(\langle \langle A \rangle \rangle) \geqslant |B \cup p| = r(A) + 1 = r(\langle A \rangle) + 1,[/math] что невозможно.
|
[math]\triangleleft[/math] |
Покрытие
Определение: |
Пусть [math]M =\; \langle X,I \rangle[/math] — матроид. Тогда покрытие (span) множества [math]A \subseteq X[/math] — это множество [math] span(A) \subseteq X [/math] такое, что [math] span(A) = \mathcal {f} x \in X \; |\; r(A) = r(A \cup x) \mathcal {g}[/math] |
Определение: |
[math] span(A) = A \cup \mathcal {f} x \in X \; |\; \forall S \subseteq A,\ S \in I :\ S \cup x \notin I \mathcal {g} [/math] |
Утверждение: |
Эти определения эквивалентны. |
Теорема: |
Покрытие обладает следующими свойствами:
- [math] A, B \in X;\ A \subseteq span(B) \ \Rightarrow \ span(A) \subseteq span(B) [/math]
- [math] A \in X,\ p \in X \setminus A,\ q \in span(A \cup p) \Rightarrow p \in span(A \cup q) [/math]
|
Доказательство: |
[math]\triangleright[/math] |
- Выпишем несколько полезных нам фактов.
- [math] r(A) \leqslant r(span(B)) [/math] (так как [math] A \subseteq span(B) [/math][2])
- [math] r(A) = r(span(A)) [/math]
- Предположим [math] r(A) \lt r(span(A)) [/math], тогда по определению ранга имеем [math] \exists D \in I,\ D \subseteq span(A),\ |D| = r(span(A)) [/math]. Учитывая [math] |D| \gt r(A) [/math], будет [math] D \nsubseteq A. [/math]
- Возьмём [math] S, p:\ S \subseteq A \cap D,\ p \in D \setminus A [/math].
|
[math]\triangleleft[/math] |
ПримечанияИсточники информации