Материал из Викиконспекты
Прямая сумма матроидов
Определение: |
Пусть [math]M_1 = \langle X_1, I_1 \rangle [/math] и [math] M_2 = \langle X_2, I_2 \rangle [/math] — матроиды с непересекающимися носителями ([math]X_1 \cap X_2 = \varnothing[/math]) и [math]X = X_1 \cup X_2, \ I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g}[/math], тогда [math] M_1 \oplus M_2 = \langle X, I\rangle[/math] называется прямой суммой матроидов. |
Утверждение: |
Прямая сумма матроидов является матроидом. |
[math]\triangleright[/math] |
Докажем аксиомы независимости для [math] I [/math].
1. [math]\varnothing \in I[/math]
[math] A_1 = \varnothing \in I_1, \ A_2 = \varnothing \in I_2 \Rightarrow A_1 \cup A_2 = \varnothing \in I [/math]
2. [math]A \subset B, \ B \in I \Rightarrow A \in I[/math]
Пусть [math]B = B_1 \cup B_2, \ B_1 \in I_1, \ B_2 \in I_2[/math], а [math]A = A_1 \cup A_2, \ A_1 \subset B_1, \ A_2 \subset B_2[/math].
Так как [math]A_1 \subset B_1 \Rightarrow A_1 \in I_1[/math] (по второй аксиоме для [math]I_1[/math]). Аналогично [math]A_2 \in I_2[/math]. Значит [math]A_1 \cup A_2 \in I[/math].
3. [math]A \in I, \ B \in I, \ \left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I[/math]
Пусть [math]A = A_1 \cup A_2[/math], [math]B = B_1 \cup B_2[/math], тогда [math]\left\vert A_1 \right\vert \lt \left\vert B_1 \right\vert [/math] или [math]\left\vert A_2 \right\vert \lt \left\vert B_2 \right\vert [/math].
В первом случае из третьей аксиомы для [math] I_1 \Rightarrow \mathcal {9} x \in B_1 \setminus A_1, \ A_1 \cup \mathcal{f} x \mathcal {g} \in I_1 [/math]. Значит [math] A_1 \cup \mathcal{f} x \mathcal {g} \cup A_2 \in I[/math].
Второй случай аналогичен первому. |
[math]\triangleleft[/math] |
Пример разложения матроида в прямую сумму
Определение: |
Пусть [math]X[/math] — множество элементов, каждый из которых раскрашен в некоторый цвет. Множество [math]A \in I[/math], если все элементы множества [math]A[/math] разного цвета. Тогда [math] M = \langle X, I\rangle[/math] называется разноцветным матроидом (англ. multicolored matroid). |
Утверждение: |
Разноцветный матроид является матроидом. |
[math]\triangleright[/math] |
Докажем аксиомы независимости для [math] I [/math].
1. [math]\varnothing \in I[/math]
В пустом множестве нет элементов [math]\Rightarrow[/math] можем считать, что все элементы различных цветов.
2. [math]A \subset B, \ B \in I \Rightarrow A \in I[/math]
Если в [math]B[/math] все элементы разного цвета, то и в [math]A \subset B[/math] это будет выполняться.
3. [math]A \in I, \ B \in I, \ \left\vert A \right\vert \lt \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, \ A \cup \mathcal{f} x \mathcal {g} \in I[/math]
В каждом из множеств [math]A[/math] и [math]B[/math] все элементы разных цветов. Так как [math]\left\vert A \right\vert \lt \left\vert B \right\vert[/math], значит в [math]B[/math] есть хотя бы один элемент [math]x[/math] такого цвета, которого нет среди элементов множества [math]A[/math], таким образом [math]A \cup \mathcal{f} x \mathcal {g} \in I[/math] |
[math]\triangleleft[/math] |
Утверждение: |
Разноцветный матроид [math] M = \langle X, I\rangle[/math] можно представить в виде прямой суммы универсальных матроидов. |
[math]\triangleright[/math] |
Занумеруем все цвета элементов в множестве [math]X[/math] от [math]1[/math] до [math]n[/math].
Пусть [math]X_i = \mathcal{f} x \mid color(x) = i \mathcal {g}[/math], [math]I_i = \mathcal{f} A \subset X_i \mid \left\vert A \right\vert \leqslant 1 \mathcal {g}[/math], где [math]i = 1 \dots n[/math], то есть в [math]X[/math] элементы одного цвета, а независимыми являются множества, состоящие из не более [math]1[/math]-ого элемента. Тогда [math] M_i = \langle X_i, I_i\rangle[/math] является универсальным матроидом.
Таким образом, [math]M = \bigoplus\limits_{i=1}^{n} M_i = \mathcal{f} X = \bigcup\limits_{i=_1}^n X_i, \ I = \bigcup\limits_{i=_1}^n A_i \mid A_i \in I_i \mathcal {g}[/math]. |
[math]\triangleleft[/math] |
См. также