Троичная логика
| Определение: |
| Трёхзначная логика (или троичная логика) — исторически первая многозначная логика, разработанная Яном Лукасевичем в 1920 г. Является простейшим расширением двузначной логики. |
В традиционной трёхзначной логике "лжи" и "истине" соответствуют знаки „“ и „“. Третьему (серединному) состоянию соответствует знак "".
Классическими примерами состояний такой логики являются знаки ">", "<" и "=", состояние постоянного тока (движется в одну сторону, движется в другую сторону, отсутствует) и др.
Одноместные операции
Очевидно, что в троичной логике всего существует одноместных операций.
| - | - | - | ||
| - | - | 0 | ||
| - | - | + | ||
| - | 0 | - | ||
| - | 0 | 0 | ||
| - | 0 | + | ||
| - | + | - | ||
| - | + | 0 | ||
| - | + | + | ||
| 0 | - | - | ||
| 0 | - | 0 | ||
| 0 | - | + | ||
| 0 | 0 | - | ||
| 0 | 0 | 0 | ||
| 0 | 0 | + | ||
| 0 | + | - | ||
| 0 | + | 0 | ||
| 0 | + | + | ||
| + | - | - | ||
| + | - | 0 | ||
| + | - | + | ||
| + | 0 | - | ||
| + | 0 | 0 | ||
| + | 0 | + | ||
| + | + | - | ||
| + | + | 0 | ||
| + | + | + |
, и — инверсии. и сохраняют состояние "-" и "+" соответственно.
и — модификации, увеличение/уменьшение на единицу по модулю три. При переполнении трита счёт начинается заново ().
Алгебраические свойства
Свойства констант:
Для конъюнкции и дизъюнкции в троичной логике сохраняются коммутативный, ассоциативный и дистрибутивный законы, закон идемпотентности.
Также действует закон двойного отрицания (отрицания Лукашевича) и тройного (циклического) отрицания:
Буквальное определение циклического отрицания вытекает из следующих свойств:
Третье состояние ("0") при отрицании Лукашевича неизменно:
Для законов двоичной логики, не справедливых для троичной, существуют их троичные аналоги.
Закон несовместности состояний (аналог закона противоречия в двоичной логике):
Закон исключённого четвёртого (вместо закона исключённого третьего), он же закон полноты состояний:
, или
Трёхчленный закон Блейка-Порецкого:
, или