Задача о наибольшей общей палиндромной подпоследовательности
Задача о наибольшей общей подпоследовательности (англ. longest common subsequence (LCS)) - классическая и хорошо изученная проблема. В данной статье мы рассмотрим её модификацию, где эта последовательность также должна быть палиндромом.
| Определение: |
| Палиндромом (англ. palindrom) называется последовательность, которая одинаково читается как слева направо, так и справа налево. |
Наибольшая общая подпалиндромная подпоследовательность (англ. The longest common palindromic sub-sequence (LCPS)) - задача, являющаяся интересным вариантом классической задачи о поиске наибольшей общей подпоследовательности, которая находит наибольшую общую подпоследовательность среди двух последовательностей так, что она также является палиндромом.
Постановка задачи
Мы предполагаем конечный алфавит . Для последовательности , мы обознамич его подпоследовательность как . Для двух последовательностей и , если общая подпоследовательность последовательносей и является палиндромом, то называется общей подпалиндромной подпоследовательностью (англ. common palindromicsubsequence). Общая подпалиндромная последовательность, имеющая максимальную длину, называется наибольшей общей подпалиндромной подпоследовательностью (англ. The longest common palindromic sub-sequence (LCPS)) и мы обозначим её как .
Динамическое программирование
Заметим, что естественные классы подзадач для соответствуют парам подпоследовательностей из двух входных последовательностей. Основываясь на этом наблюдении мы сформулируем следующую теорему, которая доказывает оптимальную подструктуру свойств задачи .
Теорема 1
Пусть и - две последовательности длины , а и - две подпоследовательности последовательностей и соответственно. Пусть - наибольшая общая подпалиндромная последовательность двух подпоследовательностей и . Тогда выполняются следующие утверждения,