Рёберный граф

Материал из Викиконспекты
Версия от 02:10, 9 января 2015; SergeyBud (обсуждение | вклад) (Новая страница: «{{Определение |definition = Пусть задан граф <tex>G</tex>, тогда его рёберным графом <tex>L(G)</tex> называ...»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Определение:
Пусть задан граф [math]G[/math], тогда его рёберным графом [math]L(G)[/math] называется граф, для которого верны следующие утверждения
  • любая вершина графа [math]L(G)[/math] представляет ребро графа [math]G[/math],
  • две вершины графа [math]L(G)[/math] смежны тогда и только тогда, когда их соответствующие рёбра смежны в [math]G[/math].


Граф G и его реберный граф L(G)

Свойства

Утверждение:
Рёберный граф связного графа связен.
[math]\triangleright[/math]
Если G связен, он содержит путь, соединяющий любые два его ребра, что переводится в путь графа L(G), содержащий любые две вершины графа L(G).
[math]\triangleleft[/math]
Утверждение:
Задача о максимальном независимом множестве для рёберного графа соответствует задаче нахождения максимального паросочетания в исходном графе.
Утверждение:
Рёберное хроматическое число графа [math]G[/math] равно вершинному хроматическому числу его рёберного графа [math]L(G)[/math].
Утверждение:
Рёберный граф рёберно-транзитивного графа является вершинно-транзитивным графом.
Утверждение:
Если граф [math]G[/math] Эйлеров граф, то его рёберный граф является Гамильтоновым графом.
[math]\triangleright[/math]

Для доказательства приведем контрпример к обратному утверждению. На следующем рисунке граф [math]L(G)[/math] — Гамильтонов граф, а граф [math]G[/math] не является Эйлеровым графом.

Line graph gam euler.PNG
[math]\triangleleft[/math]
Утверждение:
Ребра графа [math]G[/math] можно разбить на полные подграфы таким образом, чтобы ни одна из вершин не принадлежала более чем двум подграфам.
Утверждение:
Реберный граф реберного графа [math]L(G)[/math] не является исходным графом [math]G[/math].


Теорема:
Если [math]G[/math] — это [math](p,q)[/math]-граф с вершинами, имеющими степени [math]d_i[/math], то [math]L(G)[/math] имеет [math]q[/math] вершин и [math]q_L[/math] ребер, где [math]q_L = -q + {\dfrac{1}{2}}\sum\limits_i{d_{i}^{2}}[/math]
Доказательство:
[math]\triangleright[/math]

По определению реберного графа граф [math]L(G)[/math] имеет [math]q[/math] вершин. Каждые [math]d_i[/math] ребер, инцидентных вершине [math]v_i[/math], дают вклад [math]\begin{pmatrix} d_i \\ 2 \end{pmatrix}[/math] в число ребер графа [math]L(G)[/math], так что

[math]q_L = \sum\limits_i{\begin{pmatrix} d_i \\ 2 \end{pmatrix}} = \dfrac{1}{2}\sum\limits_i{d_i(d_i-1)} = \dfrac{1}{2}\sum\limits_i{d_i^2}-\dfrac{1}{2}\sum\limits_i{d_i} = \dfrac{1}{2}\sum\limits_i{d_i^2-q}[/math]
[math]\triangleleft[/math]

Построение

Line graph build 1.png Line graph build 2.png Line graph build 3.png Line graph build 4.png
Граф [math]G[/math] Новые вершины [math]L(G)[/math] Добавлены рёбра в [math]L(G)[/math] Рёберный граф [math]L(G)[/math]

Источники информации

  • Wikipedia — Реберные графы
  • Харари Фрэнк Теория графов: Пер. с англ./ Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 296 с. — ISBN 978-5-397-00622-4.(Глава 8: Реберные графы. стр. 91-104)