Обсуждение участника:Novik

Материал из Викиконспекты
Перейти к: навигация, поиск

Двоичное дерево поиска

Проверка двоичного дерева

Дано произвольное двоичное дерево и необходимо узнать является ли оно деревом поиска. Чтобы дерево было деревом поиска достаточно выполнение следующих условий для всех вершин:

  • правое и левое поддеревья являются деревьями поиска,
  • максимум в левом поддереве меньше значения в текущей вершине, а минимум в правом больше.

Псевдокод

Для удобства опишем класс Node(вершина). В поле max будем хранить максимальное значение в данном поддереве, в поле min минимальное значение, а поля l и r хранят ссылки на левого и правого сыновей соответственно.

boolean isSearchTree(Node v):
    if (v.l == null && v.r == null) // Если текущая вершина - лист
        v.max = v.val;
        v.min = v.val;
        return true;
    if (isSearchTree(v.l) && isSearchTree(v.r) && v.l.max < v.val && v.r.min > v.val)
        v.max = v.r.max;
        v.min = v.l.min;
        return true;
    else
        return false;

Поиск максимального целого поддерева, являющегося деревом поиска

Под размером дерева будем понимать количество вершин в нем. Тогда, чтобы получить решение модифицируем решение предыдущей задачи. Для каждой вершины так же будем хранить размер поддерева поиска, в котором она является корнем. Тогда получается, что для листьев он равен [math] 1 [/math], для всех остальных вершин надо проверить является ли их поддерево деревом поиска. Если да, то размер будет равен сумме размеров поддеревьев сыновей плюс один (т.к. учитываем текущую вершину), иначе [math] 1 [/math].

Псевдокод

Глобальная переменная ans хранит ссылку на корень текущего максимально поддерева поиска.

boolean isSearchTree(Node v):
    if (v.l == null && v.r == null) // Если текущая вершина - лист
        v.max = v.val;
        v.min = v.val;
        v.size = 1;
        if (1 > currMaxSize)
            ans = v;
            currMaxSize = 1; 
        return true;
    if (isSearchTree(v.l) && isSearchTree(v.r) && v.l.max < v.val && v.r.min > v.val)
        v.max = v.r.max;
        v.min = v.l.min;
        v.size = v.l.size + v.r.size + 1;
        if  (v.size > currMaxSize)
            ans = v;
            currMaxSize = v.size;
        return true;
    else
        v.size = 1;
        return false;

Поиск максимального поддерева, являющегося деревом поиска

В этой задаче нам не требуется найти целое дерево, то есть у любой в таком дереве вершины может не быть одного из поддеревьев. Тогда для решения проверку левого и правого поддеревьев надо сделать отдельно.

Псевдокод

boolean isSearchTree(Node v):
    v.max = v.val;
    v.min = v.val;
    boolean flag = false; // true - дерево является деревом поиска, false - нет - лист
    v.size = 1;
    if (v.l == null && v.r == null) // Если текущая вершина - лист
        if (1 > currMaxSize)
            ans = v;
            currMaxSize = 1; 
        return true;
    if (isSearchTree(v.l) && v.l.max < v.val)
        v.min = v.l.min;
        v.size += v.l.size;
        flag = true;
    if (isSearchTree(v.r) && v.r.min > v.val)
        v.max = v.r.max;
        v.size += v.r.size;
        flag = true;
    if  (flag && v.size > currMaxSize)
            ans = v;
            currMaxSize = v.size;
    if (flag)
        return true;
    else
        v.size = 1;
        return false;