Участник:Iloskutov/Матан 4сем

Материал из Викиконспекты
Перейти к: навигация, поиск

Содержание

Определения

Интегральные неравенства Гёльдера и Минковского

Теорема (Гёльдер):
[math](X, \mathfrak{A}, \mu)[/math] — пространство с мерой; [math]f \in L^p, g \in L^q, p \gt 1, \dfrac{1}{p} + \dfrac{1}{q} = 1[/math]. Тогда [math] \displaystyle\int\limits_X |fg| \, d\mu \lt +\infty ,\; \displaystyle\int\limits_X \left|fg\right| \, d\mu \leq \left(\displaystyle\int\limits_X |f|^{p} \, d\mu\right)^{1/p} \left(\displaystyle\int\limits_X |g|^{q} \, d\mu\right)^{1/q}[/math]
Теорема (Минковский):
Пусть [math](X,\mathfrak{A},\mu)[/math] — пространство с мерой, и функции [math]f,g \in L^{p}(X,\mathfrak{A},\mu)[/math]. Тогда [math]f+g \in L^p(X,\mathfrak{A},\mu)[/math], и более того:
[math]\left(\displaystyle\int\limits_X |f(x) + g(x)|^p\, \mu(dx) \right)^{1/p} \leqslant \left( \displaystyle\int\limits_X |f(x)|^p\, \mu(dx)\right)^{1/p} + \left( \displaystyle\int\limits_X |g(x)|^p\, \mu(dx)\right)^{1/p}[/math].

Интеграл комплекснозначной функции

Пространство $L^p(E,\mu)$

Определение:
[math]L^0(E, \mu)[/math] — множество измеримых функций, почти везде конечных на [math]E[/math].


Определение:
[math]L^p(E, \mu) = \Bigl\{f \in L^0(E, \mu) \ \Bigm|\ \displaystyle\int_E |f|^p \;d\mu \lt +\infty \Bigr\}[/math].


Пространство $L^\infty(E,\mu)$

Определение:
[math]L^\infty(E, \mu) = \left\{ f \in L^0(X, \mu) \ \middle|\ \operatorname*{ess\,sup}\limits_E |f| \lt +\infty \right\}[/math]


Существенный супремум

Определение:
[math] f \colon X \to \overline{\mathbb R}[/math]
[math]\mathrm{ess } \sup f = \inf \{ M \in \overline{\mathbb R} \mid f(x) \leqslant M[/math] при почти всех [math]x\}[/math]


Фундаментальная последовательность, полное пространство

Определение:
Последовательность [math]\{f_n\}_{n \geqslant 1} \subset L^p(X, \mu)[/math] называется фундаментальной в [math]L^p(X, \mu)[/math], если [math]\|f_n - f_k\|_p \to 0[/math] при [math]k, n \to \infty[/math], т.е.
[math]\forall \varepsilon \gt 0 \ \exists N : \|f_n - f_k\| \lt \varepsilon[/math] при [math]k, n \gt N[/math].


Плотное множество

Финитная функция

Определение:
[math]f[/math] — финитная в [math]\mathbb R^m[/math], если она равна нулю вне некоторого шара.


Гильбертово пространство

Определение:
[math]\mathcal H[/math] — полное (любая фундаментальная последовательность сходится в этом пространстве) линейное пространство со скалярным произведением


Определение:
[math]\mathcal{H} \[/math] — гильбертово пространство:
  • [math]\forall x, y \in \mathcal H \quad x \perp y \Leftrightarrow \langle x, y \rangle = 0[/math]
  • [math]\mathcal A \in \mathcal H \quad x \perp \mathcal A : \ \forall a \in \mathcal A \ x \perp a[/math]
  • [math]\displaystyle\sum_{k=1}^\infty x_k[/math] — ортогональный ряд, если [math]\forall i, j (i \ne j) \ x_i \perp x_j[/math]


Ортогональная система, ортонормированная система векторов, примеры

Определение:
Система векторов [math]\{e_i\}[/math] называется ортогональной, если [math]\forall i, j \ e_i \perp e_j[/math]


Определение:
Если к тому же [math]\forall i \ |e_i| = 1[/math] — тогда ортонормированная система


Пример:
Стандартный базис евклидового пространства — ортонормированная система


Пример:
[math]\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dotsc\}[/math] — ортогональная система. [math]\left\{\dfrac{1}{\sqrt{2\pi}}, \dfrac{\sin x}{\sqrt \pi}, \dotsc\right\}[/math] — ортонормированная система в [math]L^2[0; 2\pi][/math]


Пример:
[math]1, \left\{\dfrac{e^{ikx}}{\sqrt{2\pi}}\right\}[/math] — ортонормированная система в [math]L^2[0; 2\pi][/math] над [math]\mathbb C[/math]

Сходящийся ряд в гильбертовом пространстве

Коэффициенты Фурье, ряд Фурье

Определение:
[math]t \in L^1[-\pi; \pi][/math], тогда [math]a_k, b_k, c_k[/math] — коэффициенты Фурье для [math]t (a_k(f), b_k(f), c_k(f))[/math], а ряд [math]\dfrac{a_0(t)}{2} + \sum a_k(t) \cos kx + b_k(t) \sin kx \ ; \sum c_k(t) e^{2kt}[/math] — ряд Фурье


Базис, полная, замкнутая ОС

Определение:

  1. [math]\{e_k\}[/math] — ОС — базис, если [math]\forall x \in H \quad x = \sum\limits_{k=1}^{+\infty} c_k(x) e_k[/math]
  2. [math]\{e_k\}[/math] — ОС — полная в [math]H[/math], если [math]\left(\forall k\ z \perp e_k\right) \Rightarrow z = 0[/math]
  3. [math]\sum |c_k(x)|^2 \|e_k\|^2 = \|x\|^2[/math] — уравнение Парсеваля (уравнение замкнутости).
    Если [math]\forall x[/math] выполнено уравнение замкнутости, то [math]\{e_k\}[/math] — замкнутая ОС.


Тригонометрический ряд

Определение:
[math]T_n(x) = \dfrac{a_0}{2} + \displaystyle\sum_{k=1}^n a_k \cos kx + b_k \sin kx[/math] — тригонометрический полином степени [math]n[/math].


Определение:
[math]T(x) = \dfrac{a_0}{2} + \displaystyle\sum_{k=1}^{+\infty} a_k \cos kx + b_k \sin kx[/math] — тригонометрический ряд.


Коэффициенты Фурье функции

Ядро Дирихле, ядро Фейера

Определение:
[math]D_n(t) = \dfrac{1}{\pi} \left(\dfrac12 + \sum\limits_{k=1}^n \cos kt \right) \quad n = 0, 1, \dotsc[/math] — ядро Дирихле,
[math]\Phi_n(t) = \dfrac{1}{n+1} \sum\limits_{k=0}^n D_k(t)[/math] — ядро Фейера


Свёртка

Определение:
[math]f, k \in L^1[-\pi; \pi][/math]

[math](f*k)(x) = \int\limits_{-\pi}^{\pi} f(t) k(x-t) \;dt = \int\limits_{-\pi}^{\pi} f(x-t) k(t) \;dt[/math]

[math](f*k)(x)[/math] — свёртка.


Аппроксимативная единица

Определение:
[math]D \subset \mathbb R, x_0 \in \overline{\mathbb R}[/math] — пред. точка [math]D[/math].

[math]\forall h \in D[/math] определена функция [math]K_h(x)[/math], удовлетворяющая свойствам:

  • [math]\forall h \in D \ K_h \in L^1[-\pi; \pi] \quad \left(\int\limits_{-\pi}^\pi K_h(t) = 1\right)[/math]
  • L-нормы [math]K_h[/math] огр. в свк.: [math]\exists M \, \forall h \in D \quad \int\limits_{-\pi}^{\pi} |K_h| \;dt \leqslant M[/math]
  • [math]\forall \delta \gt 0 \int\limits_{E\delta} |K_n| \xrightarrow[h \to x_0]{} 0[/math]
Тогда семейство [math]K_h[/math] называется аппроксимативной единицей.


Усиленная аппроксимативная единица

Определение:
Заменим последнюю аксиому в предыдущем определении на следующую:
[math]K_n \in L^\infty [-\pi; \pi], \quad \operatorname*{ess\,sup}\limits_{E\delta} |K_h| \xrightarrow[h \to x_0]{} 0[/math]
Тогда [math]K_h[/math] — усиленная аппроксимативная единица.


Метод суммирования средними арифметическими

Измеримое множество на простой двумерной поверхности в R^3

Мера Лебега на простой двумерной поверхности в R^3

Поверхностный интеграл первого рода

Определение:
[math]\int f(x(t), y(t), z(t)) \sqrt{x'^2 + y'^2 + z'^2} dt[/math]


Кусочно-гладкая поверхность в R^3

Определение:
[math]M \subset \mathbb R^3[/math] называется кусочно-гладкой, если [math]M[/math] представляет собой объединение:
  • конечного числа простых гладких поверхностей
  • конечного числа простых гладких дуг
  • конечного числа точек


Сторона поверхности

Определение:
Сторона поверхности — это непрерывное поле единичных нормалей на поверхности


Задание стороны поверхности с помощью касательных реперов

Определение:
Репер — упорядоченный набор из двух (неколлинеарных) касательных векторов к поверхности


Определение:
Поле реперов [math]v_1, v_2 \colon M \to \mathbb R^3[/math], если [math]\forall x \in M \quad \langle v_1(x), v_2(x) \rangle[/math] — касательный репер


Определение:
Сторона поверхности задаётся с помощью касательных реперов: [math]n_0(x) = \dfrac{v_1(x) \times v_2(x)}{|v_1(x) \times v_2(x)|}[/math]


Интеграл II рода

Ориентация контура, согласованная со стороной поверхности

Ротор, дивергенция векторного поля

Определение:
Пусть [math]V = (P, Q, R)[/math] — гладкое векторное поле в некоторой области [math]E \subset \mathbb R^3[/math]. Тогда
[math]\operatorname{rot} V = (R'_y - Q'_z,\; P'_z - R'_x,\; Q'_x - P'_y)[/math]


Соленоидальное векторное поле

Определение:
[math]v = (P, Q, R)[/math] — соленоидальное, если существует векторный потенциал [math]B[/math], т.е. [math]v = \operatorname{rot} B[/math].


Теоремы

Теорема об интегрировании положительных рядов

Теорема:
[math](X, \mathfrak{A}, \mu) \quad U_n - [/math] измеримые функции на [math]X, U_n(x) \geqslant 0 [/math] при всех [math]x[/math]
[math]\int (\sum U_n(x)) d\mu = \sum (\int U_n(x) d\mu)[/math]

Абсолютная непрерывность интеграла

Теорема:
[math](X, \mathfrak{A}, \mu), f - [/math] суммируемая функция
[math]\forall \epsilon \gt 0 \quad \exists \delta \gt 0 : \forall E \in \mathfrak{A} \quad \mu E \lt \delta \Rightarrow \int\limits_E |f|d\mu \lt \epsilon[/math]

Теорема Лебега о мажорированной сходимости для случая сходимости по мере

Теорема:
[math](X, \mathfrak{A}, \mu), f, f_n: X \rightarrow \mathbb{R}, f_n \rightarrow f[/math] по мере [math]\mu[/math]

[math]\exists g[/math] - суммируемая и [math]\forall n |f_n| \leqslant g[/math] для почти всех [math]x[/math]

Тогда [math]f_n, f[/math] - суммируемые и [math]\int |f-f_n| d\mu \to 0[/math]

Теорема Лебега о мажорированной сходимости для случая сходимости почти везде

Теорема:
[math](X, \mathfrak{A}, \mu), f, f_n : X \rightarrow \tilde{\mathbb{R}}, f_n \rightarrow f [/math] почти везде

[math]\exists g[/math] - суммируемая и [math]\forall n |f_n| \leqslant g[/math] для почти всех [math]x[/math]

Тогда [math]f_n, f[/math] суммируемые и [math]\int |f-f_n|d\mu \to 0[/math]

Теорема Фату

Теорема:
[math](X, \mathfrak{A}, \mu), f_n \to f[/math] почти везде на [math]X[/math], и [math]\exists C: \forall n \int {f_n d\mu} \lt C[/math]
Тогда [math]\int {f d\mu} \lt C[/math]

Теорема Лебега о непрерывности интеграла по параметру

Теорема:
[math]f: X \times Y \rightarrow \mathbb{R}, \forall y \int\limits_X f(x, y) d\mu(x)[/math] - имеет смысл и выполнены 2 условия:
  1. [math]f[/math] удовлетворяет условию [math]L_{loc}(y_0)[/math]
  2. [math] y \rightarrow f(x, y)[/math] - непрерывна при всех [math]x[/math]
    [math]f(x, y) \rightarrow f(x, y_0)[/math] при [math]y \to y_0[/math] при всех [math]x[/math]
    Тогда [math]I(y) = \int\limits_X f(x, y) d\mu(x)[/math] непрерывна в [math]y_0[/math]

Правило Лейбница дифференцирования интеграла по параметру

Теорема:

Вычисление интеграла Дирихле

Теорема:
[math]\int\limits_0^{+\infty} \dfrac{\sin \alpha x}{x} = \dfrac{\pi}{2} \times sgn(\alpha)[/math]

Теорема о вычислении интеграла по взвешенному образу меры

Теорема:

Критерий плотности

Теорема:

Лемма о множествах вполне положительности заряда

Теорема:

Теорема Радона--Никодима

Теорема (Радон, Никодим):
[math](X, \mathfrak{A}, \mu)[/math] — пространство с мерой, [math]\nu \colon \mathfrak{A} \to \mathbb R, \quad \mu, \nu[/math] — конечные меры, причём [math]\nu[/math] абсолютно непрерывна относительно [math]\mu[/math].

Тогда [math]\exists ! f[/math] — сумм. отн. [math]\mu[/math]

[math]f[/math] — плотность [math]\nu[/math] относительно [math]\mu[/math].
Доказательство:
[math]\triangleright[/math]
Лемма:
[math]f, g[/math] — сумм. отн. [math]\mu[/math]. [math]\forall A \in \mathfrak{A} \int_A f \, d\mu = \int_A g \, d\mu[/math]
Хз если честно((99
[math]\triangleleft[/math]

Теорема Радона--Никодима. Доказательство существования

Теорема:

Лемма об оценке мер образов кубов из окрестности точки дифференцируемости

Теорема:

Теорема о преобразовании меры при диффеоморфизме

Теорема:

Теорема о гладкой замене переменной в интеграле Лебега

Теорема:

Теорема о произведении мер

Теорема:

Принцип Кавальери

Теорема:

Теорема Тонелли

Теорема:

Формула для Бета-функции

Теорема:

Теорема Фубини

Теорема:

Объем шара в $\mathbb R^m$

Теорема:

Теорема о вычислении интеграла по мере Бореля--Стилтьеса (с леммой)

Теорема:

Теорема о вложении пространств L^p

Теорема:
[math](X, \mathfrak{A}, \mu)[/math]

[math]\mu(X) \lt +\infty[/math]

  1. [math]1 \leqslant s \lt r \lt +\infty[/math], тогда [math]L^r \subset L^s[/math]
  2. [math]\| f \|_s \leqslant (\mu(X))^{\frac{1}{s} - \frac{1}{r}} \times \| f \|_r[/math]
Доказательство:
[math]\triangleright[/math]

1. Напрямую следует из 2

2. Пусть

[math] \dfrac{r}{s} = p \gt 1[/math]

[math] q = \dfrac{r}{r - s}[/math]

Тогда: [math]\| f \|^s_s = \int\limits_X |f|^s = \int\limits_X |f|^s \cdot 1 \leqslant (\int\limits_X |f|^{s \cdot \frac{r}{s}})^\frac{s}{r} \times (\int\limits_X 1^{\frac{r}{r-s}})^\frac{r-s}{r} = \| f \|_r^s \times (\mu(X))^{1-\frac{s}{r}}[/math] (По Гельдеру)
[math]\triangleleft[/math]

Полнота L^p

Теорема:
[math](X, \mathfrak{A}, \mu), L^p(X)[/math] - полное [math](1 \leqslant p \lt +\infty)[/math]
Доказательство:
[math]\triangleright[/math]
Ну там сложно что-то((((
[math]\triangleleft[/math]

Плотность в L^p множества ступенчатых функций

Теорема:
[math](X, \mathfrak{A}, \mu), f - [/math] ступенчатая [math] = \sum_{k=1}^{n} C_k \times[/math] [math]\chi_{Ek}[/math]

[math]X = \bigsqcup X_k[/math]

[math]\mu X (f \neq 0) -[/math] конечно

в [math]L^p(X, \mu) (1 \leqslant p \leqslant +\infty)[/math] множество ступенчатых функций плотно

Лемма Урысона

Теорема:
[math]F_1, F_2 - [/math] два непересекающихся замкнутых множества из [math]\mathbb{R}^m[/math]
Тогда [math]\exists f: \mathbb{R}^m \to \mathbb{R}[/math] (непрырывная)[math]: f|_{F_1}=0, f|_{F_2}=1[/math]

Плотность в L^p непрерывных финитных функций

Теорема:
[math]\forall p: 1 \leqslant p \lt +\infty \quad C_0[/math] всюду плотно в [math]L^p(R^m)[/math]

Теорема о непрерывности сдвига

Теорема:
[math]f_n(x) = f(x + h)[/math]
  1. [math]f[/math] - равномерно непрерывна на [math]\mathbb{R}^m \Rightarrow lim_{h \to 0} \| f_n - f \|_\infty = 0[/math]
  2. [math]1 \leqslant p \lt +\infty \quad f \in L^p (\mathbb{R}^m) \Rightarrow lim_{h \to 0} \| f_n - f \|_p = 0[/math]
  3. [math]f \in \tilde{C}[0, T] \Rightarrow lim_{h \to 0} \| f_n - f \|_\infty = 0[/math]
  4. [math]1 \leqslant p \lt +\infty \quad f \in L^p[0, T] \Rightarrow lim_{h \to 0} \| f_n - f \|_p = 0[/math]

Теорема о свойствах сходимости в гильбертовом пространстве

Теорема:
Пусть есть ГП
  1. [math]x_n \to x, y_n \to y \quad[/math] Тогда [math]\lt x_n, y_n\gt \to \lt x, y\gt [/math]
  2. [math]\sum_{n=1}^{+\infty} x_n - [/math] ряд, сходящийся в ГП. Тогда [math]\forall y \lt y, \sum_{n=1}^{+\infty} x_n\gt = \sum_{n=1}^{+\infty} \lt y, x_n\gt [/math]
  3. [math]\sum_{n=1}^{+\infty} x_n - [/math] ортогональный ряд. Тогда [math]\sum_{n=1}^{+\infty} x_n - [/math] сходится [math]\Leftrightarrow \sum_{n=1}^{+\infty} \| x_n \| - [/math] сходится.

Теорема о коэффициентах разложения по ортогональной системе

Теорема:
[math]\mathfrak{H} -[/math] ГП

[math]\{e_k\} - [/math] Ортогональная система. [math] \quad x = \sum_{k=1}^{+\infty} C_k \times e_k[/math]

Тогда:

  1. [math]\{e_k\} - [/math] ЛНЗ
  2. [math]\dfrac{\lt x, e_k\gt }{\|e_k\|^2} = C_k[/math]
  3. [math]C_k \times e_k - [/math] это проекция [math]X[/math] на 1-номерное подпространство, порождённое [math]e_k[/math].
    [math] x = C_k \times e_k + z \Rightarrow z \perp e_k [/math]

Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

Теорема:
[math]\{e_k\} - [/math] Ортогональная система в [math]\mathfrak{H}, x \in \mathfrak{H}[/math]

[math]S_n = \sum_{k=1}^{n} C_k (x) \times e_k - [/math] частичные суммы ряда Фурье

[math]\alpha_n := Lin(e_1, ..., e_n)[/math]

Тогда:

  1. [math]S_n - [/math] проекция [math]x[/math] на [math]\alpha_n[/math]
  2. [math]S_n - [/math] элемент наилучшего приближения (в [math]\alpha_n[/math]) для [math]x[/math]
    [math]\| x - S_n \| = \inf_{y \in \alpha_n} {\|x - y} \|[/math]
  3. [math]\| S_n \| \leqslant \| x \|[/math]

Следствие:

[math]\sum |C_k(x)|^2 \times \| e_k \|^2 \leqslant \|x\|^2[/math]

Теорема Рисса -- Фишера о сумме ряда Фурье. Равенство Парсеваля

Теорема:
[math]\{e_k\} - [/math] Ортогональная система в [math] \mathfrak{H}, x \in \mathfrak{H}[/math]
  1. Ряд Фурье [math]x[/math] сходится в [math]\mathfrak{H}[/math]
  2. [math]x = \sum_{k=1}^{+\infty} C_k(x) \times e_k + z, [/math] тогда [math]\forall k \quad z \perp e_k[/math]
  3. [math]x = \sum_{k=1}^{+\infty} C_k(x) \times e_k \Leftrightarrow \sum_{k=1}^{+\infty} |C_k (x)|^2 \times \|e_k\|=\|x\|^2[/math] (Равенство Парсеваля)

Теорема о характеристике базиса

Теорема:
[math]\{e_k\}[/math] — ОС в [math]H[/math]. Тогда экв.:
  1. [math]\{e_k\}[/math] — базис
  2. Выполняется обобщённое уравнение замкнутости: [math]\langle x, y \rangle = \sum\limits_{k=1}^{+\infty} e_k(x) \overline{c_k(y))} \|e_k\|^2[/math]
  3. [math]\{e_k\}[/math] — замкнута
  4. [math]\{e_k\}[/math] — полная
  5. [math]Lin(e_1 e_2 \dots)[/math] — плотно в [math]H[/math]

Лемма о вычислении коэффициентов тригонометрического ряда

Теорема:
[math]T(x) - [/math] тригонометрический ряд, [math]\quad S_n(x) - [/math] частичные суммы

Пусть [math]\exists f \in L^1[-\pi,\pi] \quad S_n \to f [/math] в пространстве [math]L^1[/math]

Тогда:

  1. [math]a_k = \dfrac{1}{\pi} \times \int_{-\pi}^{\pi} {f(x) \times \cos {kx} dx}[/math]
  2. [math]b_k = \dfrac{1}{\pi} \times \int_{-\pi}^{\pi} {f(x) \times \sin {kx} dx}[/math]
  3. [math]c_k = \dfrac{1}{2 \pi} \times \int_{-\pi}^{\pi} {f(x) \times e^{-ikx} dx}[/math]

Теорема Римана--Лебега

Теорема:
[math]E \in \mathbb{R} - [/math] измеримо, [math]f \in L^1(E)[/math]
Тогда [math]\int\limits_E {f(x) \times e^{ikx} \times dx} \to_{k \to \infty} 0[/math] (То же самое можно и с [math]\cos {x}[/math] и [math]\sin {x}[/math] вместо [math]e^{ikx}[/math])

Принцип локализации Римана

Теорема:
[math]f, g \in L^1[-\pi, \pi] \quad x_0 \in [-\pi, \pi] \quad \exists \delta \gt 0[/math]

[math]f(x) = g(x) [/math] при [math] x \in (x_0 - \delta, x_0 + \delta)[/math]

Тогда [math]S_n(f, x_0) - S_n(g, x_0) \to_{n \to +\infty} 0[/math]

Признак Дини. Следствия

Теорема:
[math]f \in L^1[-\pi, \pi] \quad x_0 \in [-\pi, \pi] \quad S \in \mathbb{R}[/math]

Пусть [math]\int\limits_0^\pi \dfrac{|f(x_0+t)+f(x_0-t)-2S|}{t} \times dt \lt +\infty [/math]

Тогда [math]S_n(f, x_0) \to_{n \to +\infty} S[/math]

Корректность определения свертки

Теорема:

Свойства свертки функции из L^p с функцией из L^q

Теорема:
[math]f \in L^p \quad k \in L^q[-\pi, \pi] \quad (\dfrac{1}{p} + \dfrac{1}{q} = 1) \quad 1 \leqslant p \lt +\infty[/math]

Тогда [math]f \times k[/math] - непрерывна на [math][-\pi, \pi][/math]

[math]\|f \times k \|_1 \leqslant \|f\|_p \times \|k\|_q[/math]

Теорема о свойствах аппроксимативной единицы

Теорема:
[math]K_n - [/math] апроксимативная единица

Тогда [math](h \to h_0)[/math]:

  1. [math]f \in \tilde{C}[-\pi, \pi] \quad f \times K_n \rightrightarrows_{h \to h_0} f[/math]
  2. [math]f \in L^p[-\pi, \pi] \quad \|f \times K_n - f \|_p \to 0, h \to 0[/math]
  3. [math]f \in L^1, f - [/math] непр. [math]x_0 \quad K_n - [/math] ??? а.е.
    [math]f \times K_n - [/math] непрерывна в окрестности [math]x_0[/math]
    [math](f \times K_n)(x_0) \to_{h \to h_0} f(x_0)[/math]

Теорема Коши о перманентности метода средних арифметических

Теорема:

Теорема Фейера

Теорема:
3 пункта:
  1. [math] f \in \tilde{C}[-\pi, \pi] \Rightarrow \sigma_n(f, x) \rightrightarrows_{n \to \infty} f(x)[/math]
  2. [math] f \in L^p[-\pi, \pi] \Rightarrow \|\sigma_n(f, x) - f \|_p \to_{n \to \infty} 0[/math]
  3. [math] f \in L^1, f - [/math] непр. [math] x \Rightarrow \sigma_n(f, x) \to_{n \to \infty} f(x)[/math]

Полнота тригонометрической системы

Теорема:
Тригонометрическая система полна в [math]L^2[/math] (Следствие теоремы Фейера)

Формула Грина

Теорема:

Формула Стокса

Теорема:

Формула Гаусса--Остроградского

Теорема:

Бескоординатное определение ротора

Теорема:

Бескоординатное определение дивергенции

Теорема:

Описание соленоидальных полей в терминах дивергенции

Теорема: