Приближение непрерывной функции полиномами на отрезке
Версия от 22:58, 19 ноября 2010; Андрей Шулаев (обсуждение | вклад) (Новая страница: «{{В разработке}} == Постановка задачи == В курсе математического анализа уже рассмотрено дв…»)
Эта статья находится в разработке!
Постановка задачи
В курсе математического анализа уже рассмотрено два аппарата приближения функции, причём оба имеют локальный зарактер. А именно, мы можем приближать функцию с помощью формулы Тейлора или с помощью инерполяционного полинома:
Причём оба способа дают хорошую точность при хороших дифференциальных свойствах функции.
Можно поставить иную задачу, которая является намного более сложной: пусть функция
непрерывна на отрезке . Существует ли некоторый полином (неважно, какой степени) такой, что ?Принципиальное отличие этой задачи - требование хорошей точности для всего отрезка при минимальных ограничениях на функцию.
Заметим, что непрерывность функции является необходимым условием. Действительно, пусть
такова, что полином найдётся. Покажем, что необходимо непрерывна:- есть полином , "обслуживающий" на всём отрезке.
- .
Но полином непрерывен, а, значит,
.Тогда
, то есть, непрерывна в точке .Положительный ответ на поставленный вопрос впервые был дан Вейерштрассом.
Теорема о существовании искомого полинома
Теорема (Вейерштрасс): |
Пусть функция - непрерывна на . Тогда - полином, такой, что |