Теорема Гуйя-Ури
| Определение: |
| Ориентированный сильно связный граф называется орсвязаными. |
Содержание
Лемма о длине цикла в ориентированном графе
| Лемма (о длине цикла в ориентированном графе): |
Пусть — произвольный ориентированный граф и для каждой вершины выполняется . Если , то в графе существует простой цикл длины хотя бы . |
| Доказательство: |
| Рассмотрим путь максимальной длины . Из последней вершины выходит хотя бы ребро в вершины, отличные от . Так как путь максимальный, то продлить его нельзя, а значит, что из выходят ребра только в вершины, содержащиеся в пути . Пусть — вершина с наименьшим номером, в которую входит ребро из . Тогда во множество входят не менее ребер, выходящих из . То есть в это множестве хотя бы вершин. Значит, в цикле не менее вершины. |
Теорема Гуйя-Ури
| Теорема (Гуйя-Ури, Ghouila-Houri): |
Если — сильно связный ориентированный граф c вершинами и для каждой выполняется , |
| Доказательство: |
|
Будем доказывать теорему от противного. Предположим, что это не так. Очевидно, что условие теоремы выполняется при и . Тогда существует орсвязный граф с , который удовлетворяет условию и при этом не является гамильтоновым. Пусть — максимальный цикл в длины . По лемме о длине цикла и по предположению о том, что граф не является гамильтоновым, получаем соотношение . Теперь рассмотрим — путь максимальной длины в такой, что никакая вершина этого пути не принадлежит циклу . Тогда . Следовательно, . Таким образом, . Это значит, что в вершину входят как минимум два ребра, выходящие из вершин, лежащих на , а из вершины выходят как минимум два ребра, которые входят в вершины, принадлежащие (так как если бы эти вершины не лежали на данном цикле, путь можно было бы продлить). |
См. также
Источники информации
- Gary Chartrand, Linda Lesniak, Ping Zhang (2010). Graphs & Digraphs, Fifth Edition, chapter 4. ISBN 9781439895184.
- Д. В. Карпов. Теория графов.