Венгерский алгоритм решения задачи о назначениях
Венгерский алгоритм (англ. Hungarian algorithm) — алгоритм, решающий задачу о назначениях за полиномиальное время. Оригинальная версия была придумана и разработана Х. Куном в 1955 году и имела асимптотику
, но позже Эдмонс и Карп (а также, независимо от них, Томидзава) показали, что можно улучшить ее до .Задача: |
Пусть дан взвешенный полный двудольный граф c целыми весами ребер , нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер. Далее будем обозначать левую и правую доли графа за и соответственно, вес ребра — как . |
Содержание
Вспомогательные леммы
Лемма: |
Если веса всех ребер графа, инцидентных какой-либо вершине, изменить (увеличить или уменьшить) на одно и то же число, то в новом графе оптимальное паросочетание будет состоять из тех же ребер, что и в старом. |
Доказательство: |
Полное паросочетание для каждой вершины содержит ровно одно ребро, инцидентное этой вершине. Указанная операция изменит на одно и то же число вес любого паросочетания. Значит, ребро, которое принадлежало оптимальному паросочетанию в старом графе, в новом графе тоже будет ему принадлежать. |
Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно этой лемме, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.
Лемма: | |||||||||
Выделим в множествах и подмножества . Пусть . Прибавим ко всем весам ребер, инцидентных вершинам из . Затем отнимем от всех весов ребер, инцидентных вершинам из (далее для краткости эта операция обозначается как ). Тогда:
| |||||||||
Доказательство: | |||||||||
Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества и состоят из первых элементов множеств и соответственно (мы упорядочиваем множества по номерам вершин). Тогда вся матрица делится на 4 блока: | |||||||||
Лемма: |
Если веса всех ребер графа неотрицательны и некоторое полное паросочетание состоит из ребер нулевого веса, то оно является оптимальным. |
Доказательство: |
Действительно, паросочетание с какими-то другими весами ребер имеет больший вес и оптимальным не является. |
Общий метод
Доказанные ранее утверждения позволяют придумать схему алгоритма, решающего задачу о назначениях: нужно найти полное паросочетание из ребер нулевого веса в графе, полученном из исходного преобразованиями, описанными в первых двух леммах.
Алгоритм, решающий задачу, работает с графом, как с матрицей весов.
- Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.
- Вычитаем из каждого столбца значение его минимального элемента. Теперь в каждом столбце есть хотя бы один нулевой элемент.
- Ищем в текущем графе полное паросочетание из ребер нулевого веса:
-
- Если оно найдено, то желаемый результат достигнут, алгоритм закончен.
- В противном случае, покроем нули матрицы весов минимальным количеством строк и столбцов (это не что иное, как нахождение минимального вершинного покрытия в двудольном графе). Пусть и — множества вершин минимального вершинного покрытия из левой и правой долей (то есть, строк и столбцов) соответственно, тогда применим преобразование . Для этого преобразования будет минимумом по всем ребрам между и , то есть, ребер нулевого веса здесь нет, поэтому, после его выполнения в матрице весов появится новый нуль. После этого перейдем к шагу 1.
Анализ времени работы
Поиск максимального паросочетания или минимального вершинного покрытия в двудольном графе совершается за операций. При каждом повторении шагов 1-4 в матрице весов появляется новый нуль. Этот нуль соответствует некоторому новому ребру между вершинами из множеств и . Всего в графе ребер, значит, всего будет совершено не более итераций внешнего цикла. Поэтому, верхняя оценка времени работы данного метода — . Более точная оценка довольно сложна и зависит от порядка чисел в матрице весов графа.
Алгоритм за
Общая идея
Будем добавлять в рассмотрение строки матрицы одну за одной, а не рассматривать их все сразу.
Описание алгоритма
- Начало
- Шаг 0. Введем следующее понятие:
- Назовём потенциалом два произвольных массива чисел и таких, что выполняется условие:
, где — заданная матрица
- Шаг 1. Добавляем в рассмотрение очередную строку матрицы
- Шаг 2. Пока нет увеличивающей цепи, начинающейся в этой строке, пересчитываем потенциал.
- Шаг 3. Как только появляется увеличивающая цепь, чередуем паросочетание вдоль неё (включая тем самым последнюю строку в паросочетание), и переходим к началу (к рассмотрению следующей строки).
- Конец
Реализация
— прямоугольная входная матрица, где . Матрица хранится в 1-индексации.
— потенциал.
— массив паросочетания. Для каждого стобца он хранит номер соответствующей выбранной строки (или , если ничего не выбрано). Полагаем, что равно номеру рассматриваемой строки.
— массив, хранящий для каждого столбца вспомогательные минимумы, необходимые для быстрого пересчета потенциала.
алгоритма Куна при попытке поиска увеличивающей цепи.
, где — множество вершин первой доли, которые были посещены обходом — массив, содержащий информацию о том, где эти минимумы достигаются, чтобы мы могли впоследствии восстановитьfunction hungarianAlgorithm(a): for i = 1 to n // рассматриваем строки матрицы a p[0] = i // для удобства реализации j0 = 0 // свободный столбец заполняем массивы minv —, used — false while true // ищем свободный столбец used[j0] = true, i0 = p[j0] // помечаем посещенными столбец j0 и строку i0 пересчитываем массив minv, находим в нем минимум (изначально ) и столбец j1, в котором он достигнут for j = 0 to m // производим пересчет потенциала u и v, соответствующее изменение minv if used[j] u[p[j]] += v[j] -= else minv[j] -= если нашли свободный столбец — выходим из цикла ищем увеличивающуюся цепочку, пользуясь массивом предков way
Время работы
Оценим время работы алгоритма. Во внешнем цикле мы добавляем в рассмотрение строки матрицы одну за другой. Каждая строка обрабатывается за время алгоритм Куна суммарно отработает за время (поскольку он представлен в форме итераций, на каждой из которых посещается новый столбец).
, поскольку при этом могло происходить лишь пересчётов потенциала (каждый — за время ), для чего за время поддерживается массив ;Итоговая асимптотика составляет
.См. также
- Алгоритм Куна для поиска максимального паросочетания
- Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах
Источники информации
- Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — 2010, 368 стр.
- Венгерский алготитм в Википедии
- Визуализатор алгоритма
- Реализация венгерского алгоритма на C++
- Венгерский алгоритм решения задачи о назначениях