Изоморфизмы упорядоченных множеств

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Два частично упорядоченных множества [math]A[/math] и [math]B[/math] называются изоморфными (англ. isomorphic), если между ними существует взаимно однозначное соответствие, сохраняющее порядок. Само соответствие называется изоморфизмом (англ. isomorphism).
Более формально, [math] \exists [/math] биекция [math] f:A \rightarrow B : \forall \, a_1,a_2 \in A : a_1 \leqslant a_2 \Leftrightarrow f(a_1)\leqslant f(a_1)[/math]

Изоморфизм конечных множеств

Теорема (1):
Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны.
Доказательство:
[math]\triangleright[/math]
Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент [math]x_1[/math]. Если он не наименьший, возьмём любой меньший него [math]x_2[/math]. Если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность [math] x_1 \gt x_2 \gt \dots [/math] , которая рано или поздно должна оборваться, т.к. множество конечное. Присвоим наименьшему элементу номер 1. Из оставшихся снова выберем наименьший элемент и присвоим ему номер 2. Будем повторять эту операцию, пока в множестве не останется непомеченных элементов. Таким образом, мы доказали, что любое множество из [math] n [/math] элементов изоморфно множеству [math] \{ 1,2,\dots,n \} [/math]
[math]\triangleleft[/math]

Изоморфизм счетных множеств

Теорема (2):
Любые два счётных плотных[1] линейно упорядоченных множества без наибольшего и наименьшего элементов изоморфны.
Доказательство:
[math]\triangleright[/math]
Пусть [math] A [/math] и [math] B [/math] — данные множества. Будем строить соответствие пошагово. Пусть мы сделали некоторое соответствие для подмножеств [math] A_n \subset A [/math] и [math] B_n \subset B [/math] из [math] n [/math] элементов. Возьмем любой элемент одного из множеств (для определенности [math] A [/math]), который не вошел в [math] A_n [/math]. Посмотрим, в каком отношении он находится со всеми элементами из [math] A_n [/math]. Он оказался либо наибольшим элементом, либо наименьшим элементом, либо стоящим между некоторыми элементами [math] a_i [/math] и [math] a_{i+1} [/math]. Найдем элемент в [math] B [/math], находящийся в таком же отношении со всеми элементами [math] B_n [/math]. Мы можем это сделать, т.к. [math] B [/math] — плотное множество без наибольшего и наименьшего элементов. Будем считать эти два элемента эквивалентными. Тогда, мы научились получать из соответствия для [math] n [/math] элементов соответствие для [math] n+1 [/math] элемента. Чтобы в пределе получить соответствие для всех элементов, воспользуемся счетностью множеств. Пронумеруем все элементы и на каждом четном шаге будем выбирать еще не взятый элемент из множества [math] A [/math] с наименьшим номером, а на нечетном — из [math] B [/math].
[math]\triangleleft[/math]

Автоморфизм

Определение:
Взаимно однозначное отображение частично упорядоченного множества в себя, являющееся изоморфизмом, называют автоморфизмом.


Примеры

  • Множество рациональных чисел интервала [math] (a,b) [/math] и множество [math] Q [/math] изоморфны. Доказательство по теореме 2.

См. также

Источники информации

Примeчания

  1. Линейно упорядоченное множество называют плотным, если в нём нет соседних элементов (то есть между любыми двумя есть третий).