Список заданий по ДМ 2к 2018 весна
Версия от 18:25, 16 февраля 2018; 188.170.75.102 (обсуждение)
- Формальный степенной ряд $\exp(s) = e^s$ определен как $e^s=1+\frac{1}{1!}s+\frac{1}{2!}s^2+\frac{1}{3!}s^3+\ldots+\frac{1}{n!}s^n+\ldots$. Логично, что $e^{-s}=1-\frac{1}{1!}s+\frac{1}{2!}s^2-\frac{1}{3!}s^3+\ldots+(-1)^n\frac{1}{n!}s^n+\ldots$. Докажите, используя определение умножения для степенных рядов, что $e^se^{-s}=1$.
- Формальный степенной ряд $(1+s)^\alpha$ определен как $(1+s)^\alpha=1+\frac{\alpha}{1}s+\frac{\alpha(\alpha-1)}{1 \cdot 2}s^2+\ldots+\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{1 \cdot 2 \cdot\ldots\cdot n}s^n+\ldots$. Докажите, что $(1+s)^\alpha(1+s)^\beta=(1+s)^{\alpha+\beta}$.
- Формальный степенной ряд $\ln\left(\frac{1}{1-s}\right)$ определен как $\ln\left(\frac{1}{1-s}\right)=s+\frac{1}{2}s^2+\frac{1}{3}s^3+\ldots+\frac{1}{n}s^n+\ldots$. Докажите, что $\exp\left(\ln\left(\frac{1}{1-s}\right)\right)=(1-s)^{-1}$.
- Пусть $B(s) = b_1s+b_2s^2+b_3s^3+\ldots+b_ns^n+\ldots$, причем $b_1\ne 0$. Пусть формальные степенные ряды $A(s)$ и $C(s)$ таковы, что $A(B(s)) = s$, $B(C(s))=s$. Докажите, что $A(s)=C(s)$ Этот ряд называется обратным к $B(s)$, обозначается как $B^{-1}(s)$.
- Будем называть нулем степенной ряд $0(s) = 0 + 0s + 0s^2 + \ldots$. Докажите, что $A(s) \ne 0(s)$, $B(s) \ne 0(s)$, то $A(s)B(s) \ne 0(s)$.
- Докажите, что $(A(s)B(s))' = A'(s)B(s) + A(s)B'(s)$.
- Докажите, что $\int(A'(s)B(s) + A(s)B'(s)) = A(s)B(s) - A(0)B(0)$.
- Найдите производящую функцию для последовательности $0 \cdot 1, 1 \cdot 2, 2 \cdot 3, 3 \cdot 4, \ldots, (n - 1) \cdot n, \ldots$.
- Найдите производящую функцию для последовательности $1^2, 2^2, 3^2, \ldots, n^2, \ldots$.
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0 + a_1, a_1 + a_2, \ldots, a_k+a_{k+1}$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots, \sum\limits_{i=0}^ka_i,\ldots$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, a_1b, a_2b^2, \ldots, a_kb^k, \ldots$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, 0, a_1, 0, a_2, 0, a_3 \ldots$
- Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(s)=a_0+a_1s+a_2s^2+\ldots$. Найдите производящую функцию последовательности $a_0, a_2, a_4, a_6 \ldots$
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0+f_1+\ldots+f_n=f_{n+2}-1$.
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0+f_2+\ldots+f_{2n}=f_{2n+1}$.
- Найдите производящую функцию для замощений прямоугольника $2\times n$ доминошками и единичными клетками.
- Найдите производящую функцию для замощений прямоугольника $2\times n$ уголками (квадратами $2\times 2$ с вырезанной одной клеткой) и единичными клетками.
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_1+f_3+\ldots+f_{2n-1}=f_{2n}-1$.
- Пользуясь производящей функцией для чисел Фибоначчи, докажите утверждение, что $f_0^2+f_1^2+f_2^2+\ldots+f_n^2=f_nf_{n+1}$.
- Найдите производящую функцию для чисел "трибоначчи" $f_0=f_1=f_2=1$, $f_n = f_{n-1}+f_{n-2}+f_{n-3}$.
- Найдите производящую функцию для последовательности, заданной рекуррентностью $f_0=f_1=f_2=1$, $f_n = f_{n-1}-2f_{n-3}$.
- Производящая функция называется рациональной, если она представима в виде отношения двух многочленов. Для производящих функций каждой из следующих последовательностей выясните, является ли она рациональной, если да, приведите ее представление в таком виде. Последовательность $1, -2, 3, -4, 5, \ldots$.
- Последовательность $2, -6, 12, \ldots, (-1)^k(k+1)(k+2),\ldots$
- Последовательность $0, 1, 4, 9, 16, 25, \ldots, k^2,\ldots$
- Последовательность $0, 1, 8, 27, 64, 125, \ldots, k^3,\ldots$
- Последовательность $0, 1, 2^s, 3^s, 4^s, 5^s, \ldots, k^s,\ldots$
- Последовательность $1, -4, 9, -16, \ldots, (-1)^k(k+1)^2,\ldots$
- Последовательность $1, 1, 4, 9, 25, \ldots, F_k^2,\ldots$
- Найдите производящую функцию для чисел Каталана.
- Путь Моцкина - путь, начинающийся в точке $(0, 0)$, составленный из векторов $(1, 1)$, $(1, 0)$, $(1, -1)$, не опускающийся ниже оси $OX$ и заканчивающийся в точке $(n, 0)$. Напишите рекуррентное соотношение для числа путей Моцкина, найдите производящую функцию для числа таких путей.
- Рассмотрим множество путей на прямой, начинающихся в 0, состоящих из шагов длины 1 вправо или влево. Будем называть такой путь блужданием. Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в 0.
- Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в 0 и не заходящих в отрицательную полупрямую.
- Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$.
- Найдите рекуррентную формулу и производящую функцию для числа блужданий из $n$ шагов, оканчивающихся в фиксированной точке $N > 0$ и не заходящих в отрицательную полупрямую.