Дискретная случайная величина

Материал из Викиконспекты
Версия от 12:05, 5 июня 2017; 5.18.204.178 (обсуждение) (Источники информации)
Перейти к: навигация, поиск
Определение:
Случайная величина (англ. random variable) — отображение из множества элементарных исходов в множество вещественных чисел. [math] \xi\colon\Omega \to \mathbb{R}[/math]


Дискретная случайная величина

Определение:
Дискретной случайной величиной (англ. discrete random variable) называется случайная величина, множество значений которой не более чем счётно, причём принятие ею каждого из значений есть случайное событие с определённой вероятностью.


Проще говоря, дискретные случайные величины — это величины, принимающие значения, которые можно пересчитать. В качестве примеров можно привести число количество выученных билетов (среди конечного числа билетов), число звонков, поступавших на телефонную станцию в течение месяца ([math]1, 2, 3, \ldots[/math]).

Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.

Функция распределения

Определение:
Функция распределения случайной величины (англ. cumulative distribution function (CDF)) — функция [math]F(x)[/math], определённая на [math]\mathbb{R}[/math] как [math]P(\xi \lt x)[/math], т.е. выражающая вероятность того, что [math]\xi[/math] примет значение, меньшее чем [math]x[/math]


Свойства функции распределения:

  • [math]F(x_1)\leqslant F(x_2)[/math] при [math]x_1 \leqslant x_2;[/math]
  • [math]F(x)[/math] непрерывна слева [math]\forall x \in \mathbb{R};[/math]
  • [math]\lim\limits_{x \to -\infty} F(x) = 0, \lim\limits_{x \to +\infty} F(x) = 1[/math].

Функция плотности вероятности

Определение:
Функция плотности вероятности (англ. Probability density function) — функция [math]f(x)[/math], определённая на [math]\mathbb{R}[/math] как первая производная функции распределения.
[math]f(x) = F'(x)[/math]


Свойства функции плотности вероятности:

  • Интеграл от плотности по всему пространству равен единице:
[math]\int\limits_{\mathbb{R}^n} f(x)\, dx = 1[/math].
  • Плотность вероятности определена почти всюду.
Иными словами, множество точек, для которых она не определена, имеет меру ноль.

См. также

Источники информации