Представление функции формулой, полные системы функций
Полные системы функций
Определение: |
Множество | функций алгебры логики называется полной системой, если замыкание этого множества совпадает с множеством всех функций.
Определение: |
Замыканием | отношения на множестве называется пересечение всех транзитивных отношений, содержащих как подмножество (иначе, минимальное транзитивное отношение, содержащее как подмножество).
Критерий Поста формулирует необходимое и достаточное условие полноты системы булевых функций:
Система булевых функций полна тогда и только тогда, когда она не содержится целиком ни в одном из классов , , , , .
В частности, если функция не входит ни в один из классов Поста, она сама по себе формирует полную систему. В качестве примера можно назвать штрих Шеффера.
Широко известны такие полные системы булевых функций:
- (конъюнкция, дизъюнкция, отрицание);
- (конъюнкция, сложение по модулю 2, константа 1).
Первая система используется, например, для представления функций в виде дизъюнктивных и конъюнктивных нормальных форм, вторая — для представления в виде полиномов Жегалкина.
Определение: |
Полная система функций называется базисом, если она перестаёт быть полной при исключении из неё любого элемента. |
Первая из упоминавшихся выше полных систем базисом не является, поскольку согласно законам де Моргана либо дизъюнкцию, либо конъюнкцию можно исключить из системы и восстановить с помощью остальных двух функций. Вторая система является базисом — все три её элемента необходимы для полноты. Максимально возможное число булевых функций в базисе — 4.
Иногда говорят о системе функций, полной в некотором замкнутом классе, и соответственно о базисе этого класса. Например, систему
можно назвать базисом класса линейных функций.Представление функции формулой
Если задана какая-либо полная система функций
, то любую функцию можно выразить, составив формулу, содержащую только функции из множества . Например, если , то функция представляется в виде .