Механизм внимания

Материал из Викиконспекты
Перейти к: навигация, поиск

Механизм внимания в рекуррентных нейронных сетях (англ. attention mechanism, attention model) — дополнительный слой используемый в рекуррентных нейронных сетях для "обращения внимания" последующих слоев сети на скрытое состояние нейронной сети [math]h_t[/math] в момент времени [math]t[/math].

Изначально механизм внимания был представлен в статье Machine Translation by Jointly Learning to Align and Translate и предполагал применение именно в Seq2Seq сетях, и лишь позже был использован применительно к изображениям Attend and Tell: Neural Image Caption Generation with Visual Attention.

Обобщенное описание

Обобщенное описание механизма внимания

Рекуррентные нейронные сети используются при обработке данных, для которых важна их последовательность. В классическом случае применения RNN результатом является только последнее скрытое состояние [math]h_m[/math], где [math]m[/math] — длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и любого скрытого состояния [math]h_t[/math] для любого [math]t[/math].

Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются [math]h_t, t = 1 \ \ldots m[/math], а также вектор [math]d[/math] в котором содержится некий контекст зависящий от конкретно задачи (пример [math]d[/math] для задачи машинного перевода использующего Seq2Seq арихитектуру).

Выходом данного слоя будет являтся вектор [math]s[/math] (англ. score) — оценки на основании которых на скрытое состояние [math]h_i[/math] будет "обращено внимание".

Далее для нормализации значений [math]s[/math] используется [math]softmax[/math]. Тогда [math]e = softmax(s)[/math]

[math]softmax[/math] здесь используется благодоря своим свойствам:

  • [math]\forall s:\ \sum_{i=1}^n softmax(s)_i = 1, [/math]
  • [math]\forall s,\ i: \ softmax(s)_i \gt = 0 [/math]

Далее считается [math]СV[/math] (англ. context vector)

[math]с = \sum_{i=1}^m e_i h_i[/math]

Результатом работы слоя внимания является [math]c[/math] который, содержит в себе информацию обо всех скрытых состоянях [math]h_i[/math] пропорционально оценке [math]e_i[/math].

Пример использования для архитектуры Seq2Seq

Пример добавления механизма внимания в Seq2Seq сеть поможет лучше понять его предназначение. Изначально в статье Machine Translation by Jointly Learning to Align and Translate применяется механизм внимания в контексте именно Seq2Seq сети.

Несмотря на то, что нейронные сети рассматриваются как "черный ящик" и интерпретировать их внутренности в понятных человеку терминах часто невозможно, все же механизм внимания интуитивно понятный людям смог улучшить результаты машинного перевода для алгоритма используемого в статье.

Базовая архитектура Seq2Seq

Пример работы базовой Seq2Seq сети

Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре Seq2Seq.

Seq2Seq состоит из двух RNNEncoder и Decoder.

Encoder — принимает предложение на языке A и сжимает его в вектор скрытого состояния.

Decoder — выдает слово на языке B, принимает последнее скрытое состояние энкодера и предыдущее предыдущее предсказаное слово.


Рассмотрим пример работы Seq2Seq сети:

[math]x_i[/math] — слова в предложении на языке A.

[math]h_i[/math] — скрытое состояние энкодера.

Блоки энкодера (зеленый) — блоки энкодера получающие на вход [math]x_i[/math] и передающие скрытое состояние [math]h_i[/math] на следующую итерацию.

[math]d_i[/math] — скрытое состояние декодера.

[math]y_i[/math] — слова в предложении на языке B.

Блоки декодера (фиолетовый) — блоки декодера получающие на вход [math]y_{i-1}[/math] или специальный токен start в случае первой итерации и возвращаюшие [math]y_i[/math] — слова в предложении на языке B. Передают [math]d_i[/math] — скрытое состояние декодера на следующую итерацию. Перевод считается завершенным при [math]y_i[/math], равном специальному токену end.

Применение механизма внимания для Seq2Seq

При добавлении механизма в данную архитектуру между RNN Encoder и Decoder слоя механизма внимания получится следуюшая схема:

Пример работы Seq2Seq сети с механизмом внимания

Здесь [math]x_i, h_i, d_i, y_i[/math] имееют те же назначения, что и в варианте без механизма внимания.

Аггрегатор скрытых состояний энкодера (желтый) — аггрегирует в себе все вектора [math]h_i[/math] и возвращает всю последовательность векторов [math]h = [h_1, h_2, h_3, h_4][/math].

[math]c_i[/math] — вектор контекста на итерации [math]i[/math].

Блоки механизма внимания (красный) — механизм внимания. Принимает [math]h[/math] и [math]d_{i - 1}[/math], возвращает [math]c_i[/math].

Блоки декодера (фиолетовый) — по сравнению с обычной Seq2Seq сетью меняются входные данные. Теперь на итерации [math]i[/math] на вход подается не [math]y_{i-1}[/math], а конкатенация [math]y_{i-1}[/math] и [math]c_i[/math].

Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые сосояния при исходных определенных словах на языке A необходимо обратить больше внимания при переводе данного слова на язык B.

См. также

Источники

Примечания