Список заданий по ДМ 2021 весна
Версия от 18:09, 16 марта 2021; 188.170.73.151 (обсуждение)
- Чему равна вероятность, что две случайно вытянутые кости домино можно приложить друг к другу по правилам домино?
- Чему равна вероятность, что на двух брошенных честных игральных костях выпадут числа, одно из которых делит другое?
- Чему равна вероятность, что если вытянуть из 52-карточной колоды две случайные карты, одной из них можно побить другую (одна из мастей назначена козырем, картой можно побить другую, если они одинаковой масти или если одна из них козырь)?
- Чему равна вероятность, что на двадцати брошенных честных монетах выпадет поровну нулей и единиц?
- Петя и Вася бросают по десять честных монет. Какая вероятность, что они выбросят одинаковое количество единиц?
- Используя формулу Стирлинга $n!\approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$ оцените, чему равна вероятность, что на $2n$ брошенных честных монетах выпадет поровну нулей и единиц. Найдите асимптотическое поведение при $n \to \infty$
- Петя и Вася три раза бросают по одной честной игровой кости. Вася два раза выкинул строго больше, чем Петя, а один раз строго меньше. При этом Петя в сумме выкинул строго больше, чем Вася. С какой вероятностью такое могло произойти?
- Приведите пример трех событий, для которых $P(A \cap B \cap C) = P(A)P(B)P(C)$, но которые не являются попарно независимыми, причем вероятности всех трех событий больше 0
- Доказать или опровергнуть, что для независимых событий $A$ и $B$ и события $C$, где $P(C) > 0$ выполнено $P(A \cap B|C) = P(A|C)P(B|C)$
- Доказать или опровергнуть, что для независимых событий $A$ и $B$ и события $C$, где $P(A) > 0$, $P(B) > 0$ выполнено $P(C|A \cap B) = P(C|A)P(C|B)$
- Доказать или опровергнуть: если $P(A|B) = P(B|A)$, то $P(A) = P(B)$
- Доказать или опровергнуть: если $P(A|B) = P(B|A)$, то $A$ и $B$ независимы
- Доказать или опровергнуть: если $P(A|C) = P(B|C)$, то $P(C|A) = P(C|B)$
- Выразите $P(A|B \cap C)$ через $P(A|B)$, $P(A|C)$, $P(B)$ и $P(C)$, либо обоснуйте, что это невозможно сделать.
- Доказать или опровергнуть: если $A$ и $B$ независимы, то $\Omega \setminus A$ и $\Omega \setminus B$ независимы
- Петя собирается смотреть серию матчей финала Флатландской хоккейной лиги. В финале две команды играют до 5 побед, ничьих не бывает, таким образом максимум в финале будет не более 9 матчей. Вася рассказал Пете, что всего в финале было 7 матчей. Петя считает матч интересным, если перед его просмотром он не знает, кто выиграет финал. Пусть все возможные последовательности исходов матчей, удовлетворяющих описанным условиями, равновероятны. Какова вероятность, что будет хотя бы 4 интересных матча?
- Петя собирается смотреть серию матчей финала Флатландской хоккейной лиги. В финале две команды играют до 5 побед, ничьих не бывает, таким образом максимум в финале будет не более 9 матчей. Вася рассказал Пете, что всего в финале было 7 матчей. Петя считает матч зрелищным, если перед его просмотром он не знает, кто его выиграет. Пусть все возможные последовательности исходов матчей, удовлетворяющих описанным условиями, равновероятны. Какова вероятность, что будет хотя бы 5 зрелищных матчей?
- Найдите распределение и математическое ожидание следующей случайной величины: число бросков нечестной монеты до первого выпадения 1.
- Найдите распределение и математическое ожидание следующей случайной величины: число бросков честной монеты до второго выпадения 1.
- Найдите математическое ожидание числа инверсий в перестановке чисел от 1 до $n$
- Найдите математическое ожидание числа подъемов (таких $i$, что $a[i] < a[i + 1]$) в перестановке чисел от 1 до $n$
- Найдите математическое ожидание числа троек $i$, $j$, $k$, где $i < j < k$ и $a[i] < a[j] < a[k]$ в перестановке чисел от 1 до $n$
- Верно ли, что если $\xi$ и $\eta$ - независимые случайные величины, то таким будут и $f(\xi)$ и $g(\eta)$ для любых функций $f$ и $g$? Достаточно доказать для конечных вероятностных пространств.
- Постройте случайную величину, имеющую конечное математическое ожидание и бесконечную дисперсию.
- Постройте случайную величину, имеющую бесконечное математическое ожидание и конечную дисперсию.
- Рассмотрим игру. Колода из 52 карт, 26 красных и 26 черных, тасуется, так что все порядки следования карт оказываются равновероятными. Затем карты извлекаются по одной и колоды в открытую до того момента, пока игрок не скажет "стоп". После этого открывается еще одна карта, если она красная, то игрок выигрывает. Какая стратегия максимизирует вероятность выигрыша игрока?
- 10 шаров раскладываются по 5 корзинам. Для каждого шара равновероятно выбирается, в какую корзину он помещается. Какое математическое ожидание числа пустых корзин?
- 10 шаров раскладываются по 5 корзинам. Для каждого шара равновероятно выбирается, в какую корзину он помещается. Какое математическое ожидание числа корзин, содержащих ровно один шар?
- Докажите, что минимум $E(X-\alpha)^2$ достигается при $\alpha = EX$.
- Предложите метод генерации случайной перестановки порядка $n$ с равновероятным распределением всех перестановок, если мы умеем генерировать равномерно распределенное целое число от 1 до $k$ для любых небольших $k$ ($k = O(n)$).
- Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[i], p[random(1..n)] )"
- Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[random(1..n)], p[random(1..n)] )"
- Рассмотрим следующий метод генерации случайной перестановки. Применим алгоритм из задания 31, а затем к получившейся перестановке верный алгоритм из задания 30. Будет ли полученное распределение на перестановках равномерным?
- Рассмотрим следующий метод генерации случайной перестановки. Применим верный алгоритм из задания 30, а затем к получившейся перестановке алгоритм из задания 31. Будет ли полученное распределение на перестановках равномерным?
- Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$)
- Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$), использующий $O(k)$ времени и памяти.
- Улучшить неравенство Маркова в общем случае нельзя. Докажите, что для любого $c > 1$ найдется такая неотрицательная случайная величина $\xi$, что $P(\xi \ge cE\xi) = 1/c$.
- Можно ли подобрать такую неотрицательную случайную величину $\xi$, чтобы для двух различных $c_1 > 1$ и $c_2 > 1$ выполнялось $P(\xi \ge c_iE\xi) = 1/c_i$ ($i \in \{1, 2\}$)?
- Для какого максимального $\alpha$ можно подобрать такую неотрицательную случайную величину $\xi$, чтобы для двух различных $c_1 > 1$ и $c_2 > 1$ выполнялось $P(\xi \ge c_iE\xi) = \alpha/c_i$ ($i \in \{1, 2\}$)?
- Улучшить неравенство Чебышева в общем случае нельзя. Докажите, что для любого $c > 0$ найдется такая отличная от константы случайная величина $\xi$, что $P(|\xi - E\xi| \ge c) = D\xi/c^2$.
- Улучшить неравенство Чебышева нельзя даже для суммы. Докажите, что для любого $c > 0$ найдется такое семейство одинаково распределенных отличных от константы случайных величин $\xi_1, \xi_2, \ldots, \xi_n$, что $P(|\sum\xi_i - \sum E\xi_i| \ge c) = nD\xi/c^2$.
- Оцените вероятность, что значение на игральной кости отличается от матожидания больше чем на 2 с помощью неравенства Чебышева. Насколько точна эта оценка?
- Докажите, что вероятность того, что значения на двух одинаково распределенных нечестных игральных костях совпадает, не меньше $1/6$.
- Найдите дисперсию следующей случайной величины: число бросков честной монеты до $k$-го выпадения 1.
- Петя хочет пойти в кино с вероятностью ровно 1/3, а у него есть только честная монета. Может ли он осуществить свой замысел?
- Петя хочет пойти в кино с вероятностью ровно 1/13, а у него есть только честная монета. Может ли он осуществить свой замысел?
- Решите предудыщее задание для любой дроби $0 \le p/q \le 1$.
- Докажите, что не существует способа для Пети пойти в кино с вероятностью 1/3, используя честную монету, для которой существует конечное $k$, что при любых исходах Петя сделает не более $k$ бросков честной монеты.
- Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую математическое ожидание числа бросков монеты, равное $2$.
- Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую минимальное математическое ожидание числа бросков. Докажите оптимальность вашей схемы.
- Дана нечестная монета. Придумайте метод определения, какое значение выпадает с большей вероятностью. Вероятность того, что этот способ ошибся, должна быть не больше $0.01$. Оцените количество бросков, которое потребуется, в зависимости от того, насколько $p$ отличается от $1/2$.
- Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних двух бросков равны 11. Вася выигрывает, когда результаты последних двух бросков равны 00. С какой вероятностью Петя выиграет?
- Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних трех бросков равны 001. Вася выигрывает, когда результаты последних трех бросков равны 010. С какой вероятностью Петя выиграет?
- Можно ли сделать игру в предыдущем задании честной (чтобы вероятности выигрышей оказались равны $1/2$), используя нечестную монету?
- Сколько байт в бите? Можно ли ответить на этот вопрос с точки зрения теории информации? Какое определение нужно дать для байта в этом случае?
- Найдите в интернете распределение букв в английском тексте. Найдите энтропию этого распределения. Сравните с энтропией в случае, когда все буквы равновероятны.
- Найдите в интернете распределение букв в русском тексте. Найдите энтропию этого распределения. Сравните с энтропией в случае, когда все буквы равновероятны.
- Посмотрите комикс: https://xkcd.com/936/ Рассмотрим следующий подход к генерации пароля: выбираются 4 случайных английских слова и записываются через пробел. Найдите энтропию такого пароля.
- Докажите, что для монеты энтропия максимальна в случае честной монеты
- Докажите, что для $n$ исходов энтропия максимальна, если они все равновероятны
- Есть нечестная монета с неизвестной вероятностью $p \in (0, 1)$. Просимулируйте с помощью этой нечестной монеты честную
- Найдите энтропию для геометрического распределения с $p = 1/2$ (счетное число исходов, $i$-й исход происходит с вероятностью $1/2^i$).
- Найдите энтропию для геометрического распределения с произвольным $p$ (счетное число исходов, $i$-й исход происходит с вероятностью $(1-p)p^{i-1}$).
- Пусть заданы полные системы событий $A = \{a_1, ..., a_n\}$ и $B = \{b_1, ..., b_m\}$. Определим условную энтропию $H(A | B)$ как $-\sum\limits_{i = 1}^m P(b_i) \sum\limits_{j = 1}^n P(a_j | b_i) \log P(a_j | b_i))$. Докажите, что $H(A | B) + H(B) = H(B | A) + H(A)$
- Что можно сказать про $H(A | B)$ если $a_i$ и $b_j$ независимы для любых $i$ и $j$?
- Что можно сказать про $H(A | A)$?
- Энтропия кода Хемминга. Рассмотрим четырехбитный код Хемминга. По четырем информационным битам $X = (x_3, x_5, x_6, x_7)$ формируется три контрольных бита $y_1, y_2$ и $y_4$. Рассмотрим семерку битов $Y = (y_1, y_2, x_3, y_4, x_5, x_6, x_7)$. Пусть информационные биты выбираются случайно равновероятно. Чему равна энтропия $H(Y)$?
- Продолжение предыдущей задачи. Отправленное сообщение либо доставляется корректно, либо в нем изменяется ровно один бит. Пусть все восемь перечисленных вариантов равновероятны. Доставляется сообщение $Z$. Чему равна энтропия $H(Z | Y)$?
- Продолжение предыдущей задачи. Чему равна энтропия $H(Z)$?
- Зафиксируйте на свой выбор достаточно богатый язык программирования. Колмогоровской сложностью слова $x$ называется величина $K(x)$ - минимальная длина программы на зафиксированном языке программирования, которая на пустом входе выводит $x$. Обозначим длину слова $x$ как $|x|$. Докажите, что $K(x) \le |x| + c$ для некоторой константы $c$.
- Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|$ строго возрастает и выполнено $K(x_i) = o(|x_i|)$.
- Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|$ строго возрастает и выполнено $K(x_i) = o(\log_2 |x_i|)$.
- Колмогоровская сложность и энтропия Шеннона. Для слова $x$, в котором $i$-й символ алфавита встречается $f_i$ раз обозначим как $H(x)$ величину, равную энтропии случайного источника с распределением $p_i = f_i/|x|$. Докажите, что $K(x) \le nH(x) + O(\log n)$.
- Докажите, что для любого $c > 0$ найдется слово, для которого $K(x) < c n H(x)$
- Симуляция дискретного распределения непрерывным. Рассмотрим источник, который возвращает равномерно распределенное вещественное число от 0 до 1 (для решения этой задачи достаточно формального определения, что для любого отрезка вероятность попадания значения в этот отрезок пропорциональна его длине). Мы хотим просимулировать дискретное равновероятное распределение с $n$ исходами. Как это сделать за $O(1)$? Будем считать, что тип данных double имеет достаточно точности и что операции со значениями типа double выполняются за $O(1)$.
- Пусть теперь мы хотим просимулировать с помощью непрерывного равномерного распределения дискретное распределение с распределением вероятностей $[p_1, \ldots, p_n]$. Как это сделать за $O(\log n)$? Разрешается провести предподготовку за $O(n)$.
- Схема Уолкера. Требуется просимулировать с помощью непрерывного равномерного распределения дискретное распределение с распределением вероятностей $[p_1, \ldots, p_n]$. Как это сделать за $O(1)$? Разрешается провести предподготовку за $O(n)$.