Участник:Unreal.eugene

Материал из Викиконспекты
Версия от 03:20, 21 мая 2021; Unreal.eugene (обсуждение | вклад) (Производящие функции)
Перейти к: навигация, поиск
Определение:
Случайное блуждание (англ. random walk) — случайный процесс, состоящий из последовательности случайных шагов на каком-нибудь множестве. Обычно рассматриваются случайные блуждания на множестве целых чисел $\mathbb{Z}$ с началом в нуле и с равновероятными шагами либо на $+1$, либо на $-1$.


Определение:
Иногда также может рассматриваться просто блуждание — комбинаторный объект, который появляется как результат случайного блуждания над целочисленной прямой. Блуждание из $n$ шагов можно однозначно задать последовательностью длины $n$, на $i$-й позиции которой стоит либо $+1$, либо $-1$, то есть битовым вектором.


Примеры

Тут когда-нибудь появятся примеры

Пути Дика

Что-то про пути Дика

Свойства

Свойства блужданий

Теорема:
Число различных блужданий длины $n$ равно $2^n$.
Доказательство:
[math]\triangleright[/math]
Для любого блуждания длины $n$ можно взаимно однозначно сопоставить битовый вектор длины $n$. Таким образом, количество различных блужданий длины $n$ равно количеству битовых векторов, а именно [math]2^n[/math].
[math]\triangleleft[/math]
Теорема:
Число различных блужданий длины $n$, заканчивающихся в целой координате $x$ ([math]|x| \leq \lfloor \frac{n}{2} \rfloor[/math]), равно [math]\dbinom{n}{\frac{n + x}{2}}[/math], если $n$ и $x$ имеют одинаковую четность, и 0 иначе.
Доказательство:
[math]\triangleright[/math]
Чтобы блуждание закончилось в координате $x$, нужно, чтобы количество движений на $+1$ было на $x$ больше (на $-x$ меньше) количества движений на $-1$. Ясно, что это невозможно, если координата $x$ имеет не ту же четность, что и $n$, так как в результате любого блуждания из $n$ шагов координата, в которой мы оказываемся в конце, всегда имеет такую же четность, что и $n$. В случае однаковой четности искомое количество равно количеству битовых векторов длины $n$, в которых ровно [math]\frac{n + x}{2}[/math] единиц. Понятно, что все такие битовые вектора можно получить следующим способом: выберем [math]\frac{n + x}{2}[/math] позиций в векторе длины $2n$, на этих позициях расположим значение $1$, а на остальных — значение $0$. Из построения ясно, что количество таких способов по определению равно числу сочетаний [math]\dbinom{n}{\frac{n + x}{2}}[/math].
[math]\triangleleft[/math]

Производящие функции

Теорема:
Пусть $w_i$ — количество блужданий длины $2n$, которые оканчиваются в нуле. Тогда верна следующая рекуррентная формула: [math]w_n = 2 \sum\limits_{i = 0}^{n - 1}{w_i C_{n-i-1}}[/math], где $C_i$ — число Каталана.
Доказательство:
[math]\triangleright[/math]

Доказательство очень похоже на вывод количества путей Дика длины $2n$.

Рассмотрим позицию последнего пересечения путем блуждания нулевой координаты, не равную $2n$. Пусть эта координата равна $2x$, тогда после этого есть два варианта развития: перемещение либо на $+1$, либо на $-1$. В обоих случаях путь в следующий раз пересечёт нулевую координату только на $2n$-ое пермещение, поэтому при перемещении из координаты $2x$ далее лежит путь Дика длины $2n - 2x - 2$, не заходящий либо левее координаты $1$ (в случае перемещения $+1$), либо правее кординаты $-1$ (в случае перемещения $-1$). Количество путей Дика длины $2n - 2x - 2$ равно $C_{n-x-1}$. Так как в каждом пути существует последняя позиция пересечения нулевой координаты, не равная $2n$, то можно рекурсивно посчитать все блуждания следующим образом:

[math]w_n = \sum\limits_{x = 0}^{n - 1}{w_x \cdot 2 C_{n-x-1}} = 2 \sum\limits_{i = 0}^{n - 1}{w_i C_{n-i-1}}[/math]
[math]\triangleleft[/math]
Теорема:
Производящая функция для количества блужданий чётной длины, заканчивающихся в нулевой координате, равна: [math]W(t) = \dfrac{1}{\sqrt{1 - 4t}}[/math]
Доказательство:
[math]\triangleright[/math]

Доказательство через производные можно посмотреть здесь. Далее будет приведено доказательство, использующее реккурентное соотношение из предыдущей теоремы.

Реккурентному соотношению из предыдущей теоремы соответствует равенство соответствующих формальных рядов:

$W(t) = 1 + 2 t W(t) C(t)$, где $C(t)$ — производящая функция для чисел Каталана.

Таким образом, можно выразить $W(t)$:

[math]W(t) = \dfrac{1}{1 - 2 t C(t)} = \dfrac{1}{\sqrt{1 - 4 t}}[/math]
[math]\triangleleft[/math]
Теорема:
Производящая функция для количества блужданий, заканчивающихся в некоторой положительной координате $n$ и не заходящих в отрицательную полупрямую, равна: [math]W_n(t) = \dfrac{(1 - \sqrt{1 - 4t^2})^{n+1}}{2^{n+1}t^{n+2}} = t^n C^{n+1}(t^2)[/math]
Доказательство:
[math]\triangleright[/math]
Потом.
[math]\triangleleft[/math]
Теорема:
Производящая функция для значений $w_{n,m}$ — количества блужданий длины $n$, заканчивающихся в некоторой положительной координате $m$ и не заходящих в отрицательную полупрямую, равна: [math]W(u, v) = \dfrac{C(v^2)}{1 - u v C(v^2)}[/math]
Доказательство:
[math]\triangleright[/math]
Потом.
[math]\triangleleft[/math]