Сжатое многомерное дерево отрезков

Материал из Викиконспекты
Версия от 18:02, 8 июня 2011; Ivashka.glukos (обсуждение | вклад) (Анализ полученной структуры)
Перейти к: навигация, поиск
Задача:
Пусть имеется множество [math]A[/math], состоящее из [math]n[/math] взвешенных точек в [math]p[/math]-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в [math]p[/math]-мерном прямоугольнике [math](x_a,x_b),(y_a,y_b),\,...\,,(z_a,z_b)[/math]

Вообще говоря, с поставленной задачей справится и обычное [math]p[/math]-мерное дерево отрезков. Для этого достаточно на [math]i[/math]-том уровне вложенности строить дерево отрезков по всевозможным [math]i[/math]-тым координатам точек множества [math]A[/math], а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за [math]O(log^p\,n)[/math] времени, а сама структура данных будет занимать [math]O(n^p)[/math] памяти.

Оптимизация

Для уменьшения количества занимаемой памяти можно провести оптимизацию [math]p[/math]-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества [math]A[/math], лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества [math]A[/math], а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были "исключены" и заведомо лежат вне желаемого [math]p[/math]-мерного прямоугольника. Такое "усеченное" многомерное дерево отрезков называется сжатым.

Построение дерева

Рассмотрим алгоритм построения сжатого дерева отрезков на следующем примере:
Set a.png

  • Cоставим массив из всех [math]n[/math] элементов множества [math]A[/math], упорядочим его по первой координате, построим на нём дерево отрезков с сохранением подмассива в каждой вершинеTree built.png
  • Все подмассивы в вершинах получившегося дерева отрезков упорядочим по следующей координатеSorted y.png
  • Повторим построение дерева для каждого из них (координата последняя, поэтому в вершинах этих деревьев мы уже ничего строить не будем — подмассивы в каждой вершине можно не сохранять)
    Tree completed.png


Псевдокод:

  build_normal_tree(element[] array)
  {
     //построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине
  }
  
  get_inside_array(vertex)
  {
     //получение подмассива, сохраненного в вершине vertex
  }
  
  build_compressed_tree(element[] array, int coordinate = 0) //собственно, построение сжатого дерева отрезков
  {
     if (coordinate < p) 
     {
        sort(array, coordinate); //сортировка массива по нужной координате
        segment_tree = build_normal_tree(array);
        for (each vertex in segment_tree) 
        {
           build_compressed_tree(inside_array(each), coordinate + 1);
        }
     }
  }

Анализ полученной структуры

Легко понять, что такое сжатое [math]p[/math]-мерное дерево отрезков будет занимать [math]O(n\,log^{p-1}\,n)[/math] памяти: превращение обычного дерева в дерево с сохранением всего подотрезка в каждой вершине будет увеличивать его размер в [math]O(log\,n)[/math] раз, а сделать это нужно будет [math]p-1[/math] раз. Но расплатой станет невозможность делать произвольный запрос модификации: в самом деле, если появится новый элемент, то это приведёт к тому, что мы должны будем в каком-либо дереве отрезков по второй или более координате добавить новый элемент в середину, что эффективно сделать невозможно. Что касается запроса веса, он будет полностью аналогичен запросу в обычном [math]p[/math]-мерном дереве отрезков за [math]O(log^p\,n)[/math].

Источники

Дерево отрезков на e-maxx.ru