Сведение задачи RMQ к задаче LCA

Материал из Викиконспекты
Перейти к: навигация, поиск

Постановка задачи RMQ

Дан массив [math]A[1..N][/math]. Поступают запросы вида [math](i, j)[/math], на каждый запрос требуется найти минимум в массиве [math]A[/math], начиная с позиции [math]i[/math] и заканчивая позицией [math]j[/math].

Алгоритм

Пример построенного дерева для массива А

Декартово дерево (англ. сartesian tree) на массиве [math]A[1..N][/math] — это бинарное дерево, рекурсивно определенное следующим образом:

  • Корнем дерева является минимальное значение в массиве [math]A[/math], скажем [math]A[i][/math].
  • Левым поддеревом является декартово дерево на массиве [math]A[1..i-1][/math].
  • Правым поддеревом является декартово дерево на массиве [math]A[i+1..N][/math].

Построим декартово дерево на массиве [math]A[/math]. Тогда [math]RMQ(i, j)[/math] = [math]LCA(A[i], A[j])[/math].

Доказательство

Мы знаем что:

  • Любая вершина дерева всегда имеет меньшее значение, чем её дети. Тогда любой предок [math]A[i][/math] или [math]A[j][/math] меньше их самих.
  • [math]LCA(A[i], A[j])[/math] ближайший к корню и по п.1 имеет наименьшее значение в своем поддереве. По построению, это поддерево содержит в частности подмассив [math]A[i..j], [/math] и [math]LCA(A[i], A[j])[/math] находится между [math]A[i][/math] и [math]A[j][/math]. То есть [math]LCA(A[i], A[j])[/math] является [math]RMQ(i, j).[/math]

Сложность

Построение дерева наивным алгоритмом [math]O(n^2)[/math]. Существует алгоритм построения за [math]O(n)[/math].

Препроцессинг для [math]LCA[/math][math]O(n)[/math] и ответ на запрос [math]O(1)[/math]. В итоге получили [math]RMQ[/math] {построение [math]O(n)[/math], запрос [math]O(1)[/math]}.

См.также