Граф блоков-точек сочленения
Версия от 06:44, 24 сентября 2011; Igor buzhinsky (обсуждение | вклад)
Определение: |
Пусть граф связен. Обозначим - блоки, а - точки сочленения . Построим двудольный граф , поместив и в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф называют графом блоков-точек сочленения графа . |
Лемма: |
В определении, приведенном выше, - дерево. |
Доказательство: |
Достаточно показать, что в Пусть аналогично нет циклов. Пусть - последовательные вершины , лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая и и не содержащая . По ней можно проложить путь в (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине , получив цикл, что противоречит тому, что - точка сочленения. - лежащая на цикле последовательные вершины . В этом случае рассуждение такое же, и и не смогут быть точками сочленения из-за цикла в . |