Транзитивное отношение
Содержание
Определение
В математике бинарное отношение на множестве называется транзитивным, если для любых трёх элементов a, b, c из выполнения отношений и следует выполнение отношения . Свойство транзитивности на отношениях в графе означает, что существоние пути из вершины a в b и из b в с влечёт существование пути из a в с. Формально записывается . Также это можно понимать, что вершины графа a, b, c находятся в одной компоненте связности.
Определение: |
Бинарное отношение | , заданное на множестве называется транзитивным, если для : .
Если это условие соблюдается не для всех троек a, b, c, то такое отношение называется нетранзитивным. Например, не для всех троек верно, что .
Определение: |
Бинарное отношение | , заданное на множестве называется нетранзитивным, если : .
Существует более "сильное" свойство — антитранзитивность. Под этим термином понимается, что для любых троек a, b, c отсутствует транзитивность. Антитранзитивное отношение — отношение победить в турнирах «на вылет»: если A победил игрока B, а B победил игрока C, то A не играл с C, следовательно, не мог его победить.
Определение: |
Бинарное отношение | , заданное на множестве называется антитранзитивным, если для : .
Свойства
- Если отношение транзитивно, то обратное отношение также транзитивно. Пусть , но по определению обратного отношения . Так как транзитивно, то и , что и требовалось доказать.
- Если отношения транзитивны, то отношение транзитивно. Пусть . Из транзитивности следует , но из определения пересечения отношений получаем , что и требовалось доказать.
- Из последнего свойства следует, что пересечение любого количества транзитивных отношений транзитивно. Пересечение всех транзитивных отношений на множестве называется транзитивным замыканием.
Примеры транзитивных отношений
- Отношения частичного порядка:
- строгое неравенство:
- нестрогое неравенство
- включение подмножества:
- строгое подмножество
- нестрогое подмножество
- делимость:
- Равенство:
- Эквивалентность:
- Импликация:
- Параллельность:
- Отношение подобия геометрических фигур
- Являться предком
Примеры нетранзитивных отношений
- Пищевая цепочка: это отношение не всегда является транзитивным(пример — волки едят оленей, олени едят траву, но волки не едят траву, контрпример — люди едят кроликов, кролики едят морковь, но люди тоже едят морковь)
- Быть предпочтительнее чем. Если мы хотим яблоко вместо апельсина, а вместо яблока мы бы хотели арбуз, то это не значит, что мы предпочтём арбуз яблоку.
- Быть другом
- Являться коллегой по работе
- Быть подчиненным. Например, во времена феодального строя в Западной Европе была в ходу поговорка: Вассал моего вассала — не мой вассал.
Примеры антитранзитивных отношений
- Быть сыном(отцом, бабушкой). Но! Можно быть братом(сестрой) — тогда отношение транзитивное.
- Игра "Камень, ножницы, бумага". Камень побеждает ножницы, ножницы выигрывают у бумаги, но камень проигрывает бумаге и т. д.
- Отношение бойцовской силы между биологическими видами(1-й вид организмов вытесняет 2-й вид, 2-й вытесняет 3-й, а тот, в свою очередь, вытесняет 1-й). Это относится и к группам людей, использующих разные экономические стратегии.