Теорема Менгера
Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как k-связность и количество непересекающихся путей относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ореинтированном или неореинтированном графе, и подразумеваем ли реберную связность и реберно непересекающиеся пути или же вершинную связность и вершинно непересекающиеся пути.
Для доказательства мы воспользуемся развитой теорией потоков. Кроме базовых определений нам потребуются понятия остаточной сети (иначе - дополнительной сети), а также теорема Форда-Фалкерсона. Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:
Лемма (о целочисленности потока): |
Если пропускные способности всех ребер целочисленные (сеть целочислена), то существует максимальный поток, целочисленный на каждом ребре. |
Доказательство: |
|
Теперь сама теорема будет тривиальным следствием. В начале сформулируем реберную версию для случая ореинтированного графа.
Теорема (Менгера о реберной двойственности в ореинтированном графе): |
Между вершинами и реберно непересекающихся путей после удаления ребер путь из в . |
Доказательство: |
Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток целочисленный на каждом ребре(по лемме). Рассмотрим минимальный |
Литература
- Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)