Расстояние Хэмминга
Расстояние Хэмминга — число позиций, в которых соответствующие цифры двух двоичных слов одинаковой длины различны. В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.
Пример
Свойства
Расстояние Хэмминга обладает свойствами метрики, удовлетворяя следующим условиям:
1)
2)
Объект x удален от объекта y так же, как объект y удален от объекта x.
3)
Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.