K-связность
Версия от 06:15, 25 октября 2011; 192.168.0.2 (обсуждение)
Связность - одна из топологических характеристик графа.
Определение: |
Граф называется | - вершинно связным, если удаление любых вершин оставляет граф связным.
Вершинной связностью графа называется
вершинно - связен
Определение: |
Граф называется | - реберно связным, если удаление любых ребер оставляет граф связным.
Реберной связностью графа называется реберно - связен
Теорема: |
, где - минимальная степень вершин графа |
Доказательство: |
smth |
Определение: |
Множество компонентам графа | вершин, ребер или вершин и ребер разделяет и , если и принадлежат различным
Определение: |
Говорят, что вершины | и -разделимы, если минимальная мощность множества, разделяющего и равна
Многие утверждения для связных графов можно обобщить для случая -связности, однако аналог тривиального утверждения часто оказывается содержательным. Простейший пример - Теорема Менгера, утверждение которой для тривиально.