Замкнутость регулярных языков относительно различных операций
Теорема: |
Пусть регулярные языки над одним алфавитом . Тогда следующие языки также являются регулярными:
- |
Доказательство: |
Свойства 1,2,3 непосредственно следуют из определения регулярных языков. При доказательстве дальнейших свойств воспользуемся эквивалентностью регулярных и автоматных языков. Пусть языки и распознаются автоматами
|
Прямой и обратный гомоморфизмы
Определение: |
Отображение | , сохраняющее операцию конкатенации , называется гомоморфизмом.
Гомоморфизм однозначно задается значениями на алфавите:
.
Определение: |
Образом языка | при гомоморфизме называется язык .
Определение: |
Прообразом языка | при гомоморфизме называется язык .
Утверждение: |
— регулярный , — гомоморфизм. Тогда — регулярный. |
Рассмотрим ДКА, распознающий . Заменим в нем все переходы по символам на переходы по их образам при гомоморфизме. Полученный автомат (с переходами по строкам) распознает в точности и имеет эквивалентный ДКА. |
Утверждение: |
— регулярный , — гомоморфизм. Тогда — регулярный. |
Рассмотрим ДКА, распознающий . Отследим для каждого состояния и символа строку : и положим в новом автомате (на том же множестве состояний). Автомат с построенной таким образом функцией переходов, очевидно, распознает слова языка и только их. |