Черновик:Перемножение матриц

Материал из Викиконспекты
Перейти к: навигация, поиск

Задача о порядке перемножения матриц — классическая задача, которая может быть решена с помощью динамического программирования. В этой задаче нам последовательность матриц, в которой мы хотим найти самый эффективный способ перемножения их. На самом деле задача заключается не в нахождении результата перемножения, а просто нужно найти порядок, в котором нам надо их перемножить.

У нас есть много способов, потому что перемножение ассоциативно. Другими словами, нет разницы как мы расставим скобки между множителями, результат будет один и тот же. Например, если у нас есть четыре матрицы A, B, C и D, то у нас есть следующие варианты:

(ABC)D = (AB)(CD) = A(BCD) = A(BC)D = ....

Однако, порядок в котором мы расставим скобки в нашем выражении повлияет на количество арифметических операций, которые мы потратим на вычисление ответа, или, другими словами, на эффективность.

Например, предположим, что А = (10 × 30), B = (30 × 5), C = (5 × 60). Тогда:

(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 операций
A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 операций.

Очевидно, что первый способ гораздо эффективней. Теперь мы поняли, что нам надо найти оптимальную расстановку скобок в нашем выражении из n матриц. Как это сделать? Мы можем перебрать все расстановки скобок (brute force), но время выполнение этого алгоритма будет эксапаненциально рости от n количества матриц. Решение данной проблемы, как мы увидим — это разбить нашу задачу на подзадачи. С помощю решения подзадач по одному разу и повторного использования решения, мы сможем заметно сократить асимптотику. Эта задача входит в классические задачи

Решение динамическим программированием

Сначала, давайте считать то, что мы реально хотим знать минимальную стоимость или минимальное количесвто операций, необходимых для перемножения матриц. Если мы перемножаем только две матрицы, то существует едиственный способ сделать это, следовательно минимальная стоимость это стоимость этого перемножения. В общем, мы моежм найти минимальную стоимость испозльуя следующий рекурсивный алгоритм:

  • Взять последовательность матриц и разделить её на две части.
  • Найти минимальную стоимость перемножения на каждой подпоследовательности.
  • Сложить эти две стоимости и прибавить к этому стоимость перемножения двух получившихся матриц.
  • Сделать это для каждой возможной позиции в последовательности, в которой она может быть разделена и взять минимум среди всех результатов.

Для пример, если у нас есть четыре матрицы ABCD, мы посчитаем для (A)(BCD), (AB)(CD), и (ABC)(D), делая рекурсивные вызовы, чтобы найти минимальную стоимость на ABC, AB, CD, и BCD. Потом мы выбираем лучший вариант. Так же, этот алгоритм дает не только минимальную стоимость, но и показывает наилучший способ перемножить матрицы: нужно только сгрупировать тем же образом, каким дается нам минимальная стоимость и сделать тоже самое для каждого множителя.

Внезапно, если мы применим этот алгоритм, то мы обнаружим, что это так же медленно, как и наивный способ перебирания всех скобочных последовательностей! Что пошло не так? Ответом является то, что мы делаем много ненужной работы. Например, выше мы сделали рекурсивный вызов, чтобы найти наилучшую стоимость для подсчета ABC и AB. Но нахождение лучшей стоимости для подсчета ABC так же требует нахождения лучшей стоимости для AB. Так как рекурсия растет вглбь все больше и больше, то и число ненужных повторений увеличивается.


Псевдокод (без меморизации):

// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
Matrix-Chain-Order(int p[])
{
    // length[p] = n + 1
    n = p.length - 1;
    // m[i,j] = Minimum number of scalar multiplications (i.e., cost)
    // needed to compute the matrix A[i]A[i+1]...A[j] = A[i..j]
    // cost is zero when multiplying one matrix
    for (i = 1; i <= n; i++) 
       m[i,i] = 0;

    for (L=2; L<=n; L++) { // L is chain length
        for (i=1; i<=n-L+1; i++) {
            j = i+L-1;
            m[i,j] = MAXINT;
            for (k=i; k<=j-1; k++) {
                // q = cost/scalar multiplications
                q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j];
                if (q < m[i,j]) {
                    m[i,j] = q;
                    // s[i,j] = Second auxiliary table that stores k
                    // k      = Index that achieved optimal cost
                    s[i,j] = k;
                }
            }
        }
    }
}
  • Замечания : Индексирование массива p начинается с нуля, а у массивов m и s с единицы.

Ссылки

использованы материалы ru.wikipedia.org [1]

Литература

  • Томас Х. Кормен и др. Алгоритмы: построение и анализ
  • Sanjoy Dasgupta , Christos H. Papadimitriou, Umesh Vazirani Algorithms