Умножение перестановок
Определение: |
Умножением (композицией) перестановок называется перестановка, получающаяся по следующему правилу:
[math] (a \circ b)_i = a_{b_i} [/math] |
Утверждение: |
Умножение перестановок ассоциативно:
[math] (a \circ (b \circ c))_i = ((a \circ b) \circ c)_i [/math] |
[math]\triangleright[/math] |
Доказывается простым раскрытием скобок.
- [math] (a \circ (b \circ c))_i = a_{(b \circ c)_i} = a_{b_{c_i}} [/math]
- [math] ((a \circ b) \circ c)_i = (a \circ b)_{c_i} = a_{b_{c_i}} [/math]
|
[math]\triangleleft[/math] |
Пример
[math] a = {{1, 2, 3, 4, 5, 6} \choose {2, 5, 6, 3, 1, 4}},
b = {{1, 2, 3, 4, 5, 6} \choose {4, 1, 3, 6, 5, 2}} [/math]
[math] {{1, 2, 3, 4, 5, 6} \choose {2, 5, 6, 3, 1, 4}} \circ {{1, 2, 3, 4, 5, 6} \choose {4, 1, 3, 6, 5, 2}} =
{{4, 1, 3, 6, 5, 2} \choose {3, 2, 6, 4, 1, 5}} \circ {{1, 2, 3, 4, 5, 6} \choose {4, 1, 3, 6, 5, 2}} =
{{1, 2, 3, 4, 5, 6} \choose {3, 2, 6, 4, 1, 5}}
[/math]
Обратная перестановка
Определение: |
Обратной перестановкой [math] a^{-1} [/math] к перестановке [math] a [/math] называется такая перестановка, что:
[math] (a^{-1} \circ a)_i = (a \circ a^{-1})_i = i [/math] |
При представлении перестановки в виде циклов обратную перестановку можно легко получить, инвертировав все ребра в циклах.
[math] a = (1, 3, 2), (4, 5) \Rightarrow a^{-1} = (1, 2, 3), (4, 5) [/math]
Определение: |
Перестановка, равная своей обратной, называется инволюцией:
[math] a_i = a^{-1}_i \Rightarrow (a \circ a ^{-1})_i = (a \circ a)_i = a_{a_i} = i [/math] |
Число инволюций можно посчитать, используя рекуррентную формулу:
[math] a(0) = 1,\ a(1) = 1,\ a(n) = a(n-1) + (n-1)a(n-2),\ n\gt 1.[/math]
Группа перестановок
Определение: |
Группа - алгебраическая структура, удовлетворяющая следующим свойствам:
Пусть [math] M [/math] - множество, [math] M = \{ x, y, z, ... \} [/math], и на этом множестве задана бинарная операция [math] \circ [/math], такая, что [math] \forall x, y \in M: x \circ y = z \in M [/math].
Тогда для группы выполняются:
- [math] (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3) [/math] - ассоциативность соответствующей бинарной операции.
- Существование нейтрального элемента [math] e [/math] относительно [math] \circ [/math]: [math] \forall g \in M: g \circ e = e \circ g = g [/math]
- Существование обратного элемента [math] g^{-1} [/math] : [math] \forall g \in M: \exists g^{-1} \in M: g \circ g^{-1} = g^{-1} \circ g = e [/math]
|
Утверждение: |
Множество перестановок с [math] n [/math] элементами с операцией умножения является группой (часто группу перестановок называют симметрической, и обозначают [math] S_n [/math]). |
[math]\triangleright[/math] |
Свойства 1 и 3 выполняются уже по пунктам 1 и 2 выше, а в качестве нейтрального элемента можно брать тождественную перестановку ([math] \pi_i = i [/math]). |
[math]\triangleleft[/math] |
Теорема Кэли утверждает, что любая конечная группа изоморфна подгруппе соответствующей группе перестановок.