Первообразные корни
Версия от 01:37, 18 июня 2010; Haliullin (обсуждение | вклад) (Новая страница: «==Первообразные корни== ===Количество первообразных корней=== * '''Определение.''' ''<math>g</math> наз…»)
Первообразные корни
Количество первообразных корней
- Определение.
Где
- Теорема. Пусть
- Доказательство (прямая теорема)
Так как ga - первообразный корень, значит (ga)φ(p)=1, но p
, поэтому φ(p)=p-1, значит (ga)p-1=1, и это же справедливо для g: gp-1=1. Пусть НОД(a;p-1)=k, k>1, тогда . Но, по определению ord, - минимальная степень, в которую следует возвести , чтобы получить единицу, а . Получили противоречие, теорема доказана.- Доказательство (обратная теорема)
Пусть существует k такое, что
, и . Но , значит . Следовательно либо , либо . Но по определению первообразного корня, и ord, , то есть , а так как НОД , то , что противоречит нашему предположению. Обратная теорема доказана.- Следствие (из обратной теоремы) Количество различных первообразных корней по модулю p равно φ(p-1).
Доказательство
Пусть g - первообразный корень.
Во-первых, при . Таким образом есть смысл рассматривать только первообразные корни, образованные из исходного, путем возведения в степень не выше .
Во-вторых, исходный первообразный корень существует, так как мультипликативная группа поля вычетов циклична (то есть ).
По доказанной обратной теореме - первообразный корень. С другой стороны для любого другого a, по прямой теореме не является первообразным корнем. Но по определению равно количеству НОД . Очевидно, для всех различны. Теорема доказана.