Суммируемые функции произвольного знака
Пусть f измерима на множестве E.
Напомним:
Интеграл распространяется так же:
Из измеримости следует, что и тоже будут измеримы. Также, они неотрицательны.
уже были определены нами ранее.
| Определение: | 
| суммируема на , если на нём суммируемы и . В этом случае, . | 
Заметим, что, по линейности . Тогда 
Так как , то из суммируемости модуля вытекает суммируемость и .
Как следствие определения, получаем, что суммируема тогда и только тогда, когда суммируема. То есть, в теории Лебега нет условно сходящихся интегралов.
Пример: интеграл Дирихле равен по Риману, но по Лебегу он не суммируем.
Так как определен линейной формулой, то на суммируемые функции произвольного знака переносятся также -аддитивность и линейность интеграла. Достаточно их написать для и сложить.
Абсолютная непрерывность
| Теорема (Абсолютная непрерывность): | 
Пусть  — суммируема на . Тогда   | 
| Доказательство: | 
| 
 , то есть, достаточно рассмотреть неотрицательные функции. — суммируема и неотрицательна. . По определению, для любого существует хорошее . Тогда , и по сигма-аддитивности, . (так как — хорошее). (так как f ограничена). ; . Итак : . Потребуем, чтобы . Тогда . Тогда получается, что для таких , если . Подставляем .  |