Обсуждение:Суммируемые функции произвольного знака
Версия от 03:40, 10 января 2012; Sementry (обсуждение | вклад)
Содержание
Пример с интегралом Дирихле
А откуда мы знаем, что Дмитрий Герасимов 02:11, 7 января 2012 (MSK)
по Лебегу не суммируем? --- Наверное, можно доказать, что если несобственный интеграл Римана от какой-то функции сходится, то он будет равен соответствующему интегралу Лебега. Но мы на это просто забили. --Мейнстер Д. 05:19, 8 января 2012 (MSK)
Доказательство теоремы об абсолютной непрерывности
Дмитрий Герасимов 02:30, 7 января 2012 (MSK)
— почему мы здесь внезапно во втором интеграле начинаем интегрирование по e_\varepsilon, а не по B_2? --- Потому что Мейнстер Д. 05:19, 8 января 2012 (MSK) --
Ограниченность f в теореме
Тут был вопрос о том, почему Мейнстер Д. 05:06, 8 января 2012 (MSK)
ограничена, так вот, насколько я понимаю, ограниченность следует из суммируемости. Кстати, можно привести пример интегрируемой по Лебегу несуммируемой функции, достаточно взять функцию, ограниченную почти всюду. --Интеграл Римана
Кто-нибудь может мне объяснить, почему рассуждения для абсолютной и условной сходимости, аналогичные приведенным в параграфе, не проходят для интегрла Римана? --Мейнстер Д. 03:40, 10 января 2012 (MSK)