Условная вероятность

Материал из Викиконспекты
Версия от 06:22, 13 января 2012; Gromak (обсуждение | вклад) (Независимые события)
Перейти к: навигация, поиск

Определение

Пусть задано вероятностное пространство [math](\Omega, P)[/math].

Определение:
Условной вероятностью события A при условии, что произошло событие B, называется число [math]{P}(A \mid B) = [/math] [math]\frac{{P}(A\cap B)}{{P}(B)}[/math], где [math]A, B \subset \Omega[/math].

Замечания

  • Если [math]{P}(B) = 0[/math], то изложенное определение условной вероятности неприменимо.
  • Прямо из определения очевидно следует, что вероятность произведения двух событий равна:
[math]{P}(A\cap B) = {P}(A \mid B) {P}(B)[/math].
  • Если события [math]A[/math] и [math]B[/math] независимые, то [math]{P}(A \mid B) = [/math] [math]\frac{{P}(A\cap B)}{{P}(B)} = {P}(A)[/math]

Пример

Пусть имеется 12 шариков, из которых 5 — чёрные, а 7 — белые. Пронумеруем чёрные шарики числами от 1 до 5, а белые — от 6 до 12. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.

Обозначим за [math]A[/math] событие "достали чёрный шар" и за [math]B[/math] событие "достали шар с чётным номером". Тогда [math]P(B) = \frac{1}{2}[/math], т. к. ровно половина шариков имеют чётный номер, а [math]P(A \cap B) = \frac{2}{12} = \frac{1}{6}[/math], т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.

Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна [math]{P}(A \mid B) = \frac{{P}(A\cap B)}{{P}(B)} = \frac{1}{3}[/math]

См. также

Источники