Связь вершинного покрытия и независимого множества
Версия от 02:16, 18 января 2012; 192.168.0.2 (обсуждение)
Содержание
Определения
Независимое множество
Определение:
Независимым множеством вершин (англ. Independent vertex set) графа
называется такое подмножество множества вершин графа V, что
.
Определение:
Максимальным независимым множеством (англ. Maximum independent vertex set) называется независимое множество вершин максимальной мощности.
Пример
Множество вершин синего цвета - минимальное независимое множество.
Связь вершинного покрытия и независимого множества
Теорема: |
Дополнение минимального вершинного покрытия является максимальным независимым множеством. |
Доказательство: |
Рассмотрим произвольное максимальное независимое множество вершин графа . Из определения следует, что любое ребро соединяет либо вершину из и , либо вершины множества . Таким образом, каждое ребро инцидентно некоторой вершине множества , то есть является некоторым вершинным покрытием. Тогда мощность минимального вершинного покрытия или .Рассмотрим произвольное минимальное вершинное покрытие графа Значит, . Так как каждое ребро инцидентно хотя бы одной вершине из , то является независимым множеством. Тогда или . , и является максимальным независимым множеством, а - минимальным вершинным покрытием. |
См. также
Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах.