Сжатое суффиксное дерево
Суффиксный бор — удобная структура данных для поиска подстроки в строке, но она занимает много места в памяти. Рассмотрим в боре все пути от до , в которых у каждой вершины только один сын. Такой путь можно сжать до ребра , записав на нем все встречающиеся на пути символы. Получилось сжатое суффиксное дерево.
Содержание
Определение
Суффиксное дерево (сжатое суффиксное дерево)
для строки (где ) — дерево с листьями, каждая внутренняя вершина которого имеет не меньше двух детей, а каждое ребро помечено непустой подстрокой строки и символом ее начала. Два ребра, выходящие из одной вершины, не могут иметь одинаковых символьных меток. Такое дерево, как и суффиксный бор, содержит все суффиксы строки , причем каждый суффикс заканчивается точно в листе и нигде кроме него.Защитный символ
По определению суффиксное дерево существует не для любой строки
: если один суффикс строки совпадает с префиксом другого, то построить такое суффиксное дерево невозможно. Например, для строки суффикс является префиксом суффикса Для решения проблемы в конце строки добавляется символ, не входящий в исходный алфавит: защитный символ. Как правило, это . Любой суффикс строки с защитным символом действительно заканчивается в листе и только в листе.Далее
- длина строки с защитным символом.Хранение суффиксного дерева
Для хранения на ребре подстроки используют индексы ее начала и конца в исходной строке —
. Итак, с каждым ребром дерева ассоциируются две инцидентные ей вершины, символ, с которого начинается подстрока на ребре и два числа . Представим дерево как массив , где — количество вершин в дереве, - мощность алфавита. Каждая ячейка массива содержит информацию о том, в какую вершину ведет ое ребро по ому символу и индексы подстроки на ребре. Очевидно, такое дерево занимает памяти.Количество вершин
В сжатом суффиксном дереве содержится
листьев, т.к. строка содержит ровно суффиксов. Рассмотрим теперь количество внутренних вершин такого дерева.Лемма: |
Количество внутренних вершин дерева, каждая из которых имеет не менее двух детей, меньше количества листьев. |
Доказательство: |
Докажем лемму индукцией по количеству листьев .База При в дереве одна внутренняя вершина - верно.Переход Рассмотрим все вершины в дереве для строки длины , у которых хотя бы один из детей - лист.Если среди них есть вершина, у которой более двух детей, отрежем от нее лист. Получим дерево с Иначе среди этих вершин есть вершина, у которой оба ребенка - листья. Отрежем оба этих листа, получим дерево с листьями, удовлетворяющее условию леммы по индукционному предположению, причем в нем количество внутренних вершин равно количеству внутренних вершин в исходном дереве. Тогда у полученного дерева менее внутренних вершин, значит в исходном дереве количество внутренних вершин меньше количества листьев. листьями, удовлетворяющее условию леммы, количество внутренних вершин которого на меньше количества внутренних вершин в исходном дереве. Тогда, по индукционному предположению, у полученного дерева менее внутренних вершин, значит в исходном дереве количество внутренних вершин меньше . |
Занимаемая память
Так как любое суффиксное дерево удовлетворяет условиям леммы (у каждой вершины не менее двух детей), то количество внутренних вершин в нем меньше количества листьев, равного
. Значит, для его хранения требуется памяти.Построение суффиксного дерева
Рассмотрим наивный алгоритм построения суффиксного дерева:
forto do //для каждого символа строки insert( ) //добавляем суффикс, начинающийся с него
insert(l,r)//инициализируем текущую вершину корнем while ( ) if //если мы не можем пойти из вершины по символу create_vertex( ) //создаем новую вершину else for to //для каждого символа на ребре из текущей вершины if //если нашли не совпадающий символ разбить ребро break if ребро не разбивали //переходим по ребру //двигаемся по суффиксу на длину подстроки, записанной на ребре
Этот алгоритм работает за время алгоритм Укконена, позволяющий построить дерево за время .
, однако существуетИспользование сжатого суффиксного дерева
Суффиксное дерево позволяет за линейное время найти:
- Количество различных подстрок данной строки
- Наибольшую общую подстроку двух строк
- Суффиксный массив и массив (longest common prefix) исходной строки
Источники
- Дэн Гасфилд — Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология — СПб.: Невский Диалект; БХВ-Петербург, 2003. — 654 с: ил.