PS-полнота языка верных булевых формул с кванторами (TQBF)
Версия от 19:10, 3 июня 2012; Berezhkovskaya (обсуждение | вклад)
Определение: |
расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами. . |
Чтобы доказать, что , необходимо показать, что и .
Лемма (1): |
. |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
. |
Доказательство: |
Рассмотрим язык . Построим такую функцию , что и .Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера.Пусть — конфигурация . Размер конфигурации есть , где — длина входа, — некоторый полином. Тогда выражение обозначает , где — все переменные конфигурации . Аналогично выражение обозначает . Всего конфигураций у ДМТ .Рассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов.. . Заметим, что данная формула имеет экспоненциальный размер, поэтому воспользуемся квантором и перепишем её следующим образом:. Размер полученной функции полиномиален относительно .Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из .. Докажем, что сведение корректно.Если , то существует путь из стартовой конфигурации в финишную, причём длины не более, чем , а значит формула верна.Если формула Таким образом, оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . . |