Факторгруппа
Версия от 21:24, 2 июля 2010; RomanSatyukov (обсуждение | вклад)
Эта статья требует доработки!
- Для примера факторгруппы надо: группа , ее нормальная подгруппа и группа-результат.
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Факторгруппа
Рассмотрим группу и ее нормальную подгруппу . Пусть - множество смежных классов по . Определим в групповую операцию по следующему правилу: произведением двух классов является класс, в который входит произведение представителей этих классов. Проверим корректность этого определения. Пусть . Докажем, что . Достаточно показать, что .
Определение: |
Таким образом, фактормножество | образует подгруппу, которая называется факторгруппой по . Нейтральным элементом является , обратным к - .
Примеры
- (см. замечание) примером факторгруппы является группа класса вычетов по модулю .