Сортировка слиянием
Содержание
Описание
Сортировка слиянием — алгоритм сортировки. Он был предложен Джоном фон Нейманом в 1945 году.
Это устойчивый алгоритм, использующий дополнительной памяти и времени.
Принцип работы
Этот алгоритм использует принцип «разделяй и властвуй». Этот принцип заключается в том, что исходная задача разбивается на подзадачи меньшего размера, а потом они решаются рекурсивным методом или же конкретно, если их размер мал. Потом из решения объединяются и получается решение основной (исходной) задачи.
Для процедуры слияния требуется два отсортированных массива. Зная, что массив из одного элемента по определению отсортирован, мы можем разработать такой алгоритм:
- Массив разбивается на равные (или почти равные) части, до тех пор, пока он не разобьется на части, размер которых равен единице.
- Далее каждая из частей сортируется по отдельности. Или нет, в случае, если это у нас одиночный элемент.
- После происходия слияние двух упорядоченных массивов в один.
Слияние двух массивов
У нас есть два массива и (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив размером . Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок.
Ниже приведён псевдокод процедуры слияния, который сливает две части массива A — [left; mid) и [mid; right)
Merge(A, left, mid, right):
  it1 = 0
  it2 = 0
  result = new int[right - left]
  
  while left + it1 < mid and mid + it2 < right:
    if A[left + it1] < A[mid + it2]:
      result[it1 + it2] = A[left + it1]
      it1 += 1
    else:
      result[it1 + it2] = A[mid + it2]
      it2 += 1
  
  while left + it1 < mid:
    result[it1 + it2] = A[left + it1]
    it1 += 1
  
  while mid + it2 < right:
    result[it1 + it2] = A[mid + it2]
    it2 += 1
  
  for i = 0 to it1 + it2:
    A[left + i] = result[i]
Рекурсивный алгоритм
Функция сортирует участок массива от элемента с номером left до элемента с номером right. Будем реализовывать так, что бы производилась сортировка полуинтервала [left, right)
right и left — правая и левая граница массива, middle — середина.
sort(array a, int left, int right)
  middle = left + (right - left ) / 2;  
  if left >= right    
    return;
  sort(a, left, middle);
  sort (a, middle, right);
  merge(array a, left, middle, right);
Пример работы алгоритма показан на рисунке:
Время работы
Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай  — время сортировки массива длины n, тогда для сортировки слиянием справедливо  
( — это время, необходимое на то, чтобы слить два массива). Распишем это соотношение:
Осталось оценить . Мы знаем, что , а значит . Уравнение примет вид . Так как — константа, то .


