Неравенство Маркова
Версия от 23:26, 4 января 2013; Viruzix (обсуждение | вклад)
Содержание
Неравенство Маркова
Нера́венство Ма́ркова в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её математического ожидания. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.
Формулировка
Пусть случайная величинаопределена на вероятностном пространстве ( , , ), и ее математическое ожидание . Тогда
Доказательство
Возьмем для доказательства следующее понятие: Пусть- некоторое событие. Назовем индикатором события случайную величину , равную единице если событие произошло, и нулю в противном случае. По определению величина имеет распределение Бернулли с параметром , и ее математическое ожидание равно вероятности успеха . Индикаторы прямого и противоположного событий связаны равенством . Поэтому . Тогда . Разделим обе части на :
Примеры
Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.
Неравенство Чебышева
Неравенство Чебышева является следствием Неравенства Маркова и утверждает, что случайная величина в основном принимает значения, близкие к значению математического ожидания. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего.
Формулировка
Если, то будет выполнено
Доказательство
Длянеравенство равносильно неравенству , поэтому
Следствие
Как следствие получим так называемое "правило трех сигм",которое означает что вероятность случайной величине отличаться от своего математического ожидания более, чем на три корня из дисперсии мала. Рассмотрим такое утверждение: Если, то . Доказательство: Согласно неравенству Чебышева Отсюда заметим, что вероятность отклониться значению случайной величины от значения математического ожидания меньше чем