Расчёт вероятности поглощения в состоянии
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя . Составим матрицу G, элементы которой равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j.
| Теорема: | 
| Доказательство: | 
| Пусть этот переход будет осуществлён за r шагов: i → → → ... → → j, где все являются несущественными. Тогда рассмотрим сумму , где Q - матрица переходов между несущественными состояниями, R - из несущественного в существенное.Матрица G определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи | 
Псевдокод
- количество состояний Марковской цепи, - количество переходов. Состояния пронумерованы от 0 до . Пусть входные данные хранятся в массиве где -ая строка характеризует -ый переход таким образом: - вероятность перехода из состояния в состояние . Создадим массив типа Boolean, где -ое обозначает что -ое состояние является поглощающим. Если состояние поглощающее то с вероятностью 1 оно переходит само в себя. Найдем такие состояния. Также посчитаем количество поглощающих состояний _.
Литература
- Википедия - Цепи Маркова
- Кемени Дж., Снелл Дж. "Конечные цепи Маркова".
