Ковариация случайных величин

Материал из Викиконспекты
Версия от 01:27, 13 января 2013; 188.227.78.59 (обсуждение) (Неравенство Коши — Буняковского)
Перейти к: навигация, поиск
Определение:
Ковариация случайных величин: пусть [math]\eta,\xi[/math] — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:
[math]Cov(\eta,\xi)=E\big((\eta-E\eta)(\xi-E\xi)\big)[/math].


Вычисление

В силу линейности математического ожидания, ковариация может быть записана как:

[math]Cov(\eta, \xi) = E\big((\xi - E\xi)(\eta - E\eta)\big) = E(\xi\eta - \eta E\xi + E\xi E\eta - \xi E\eta) = [/math]
[math]= E(\xi\eta) - E\xi E\eta - E\xi E\eta + E\xi E\eta = E(\xi\eta) - E\xi E\eta [/math]

Итого, [math]Cov(\eta, \xi) = E(\xi\eta) - E\xi E\eta [/math]

Свойства ковариации

  • Ковариация симметрична:
[math]Cov(\eta,\xi) = Cov(\xi,\eta)[/math].
  • Пусть [math]\eta_1,\ldots, \eta_n[/math] случайные величины, а [math]\xi_1 = \sum\limits_{i=1}^n a_i \eta_i,\; \xi_2 = \sum\limits_{j=1}^m b_j \eta_j[/math] их две произвольные линейные комбинации. Тогда
[math]Cov(\xi_1,\xi_2) = \sum\limits_{i=1}^n\sum\limits_{j=1}^m a_i b_j Cov(\eta_i,\eta_j)[/math].
  • Ковариация случайной величины с собой равна её дисперсии:
[math]Cov(\eta,\eta) = E(\eta^2) - (E(\eta))^2 = D[\eta][/math].
  • Если [math]\eta,\xi[/math] независимые случайные величины, то
[math]Cov(\eta,\xi) = 0[/math].

Обратное, вообще говоря, неверно.


Неравенство Коши — Буняковского

Теорема (неравенство Коши — Буняковского):
Если принять в качестве скалярного произведения двух случайных величин ковариацию [math]\langle \eta, \xi \rangle = Cov (\eta, \xi)[/math], то квадрат нормы случайной величины будет равен дисперсии [math] ||\eta||^2 = D [ \eta ], [/math] и Неравенство Коши-Буняковского запишется в виде:
[math]Cov^2(\eta,\xi) \leqslant \mathrm{D}[\eta] \cdot \mathrm{D}[\xi][/math].
Доказательство:
[math]\triangleright[/math]

Для этого предположим, что [math] t [/math] — некоторое вещественное число, которое мы выберем позже, и рассмотрим очевидное неравенство

[math] E((V+tW)^2) \geqslant 0 [/math], где [math] V = \eta - E\eta [/math] и [math] W = \xi - E\xi [/math].

Используя линейность математического ожидания, мы получаем такое неравенство:

[math] E(V^2)+2tE(VW)+t^2E(W^2) \geqslant 0 [/math]

Обратим внимание, что левая часть является квадратным трехчленом, зависимым от [math] t [/math].

Мы имеем:

[math] E(V^2)=\sigma_\eta ^2[/math], [math] E(W^2)=\sigma_\xi ^2[/math] и [math] E(VW)=Cov(\eta,\xi); [/math]

Итак, наш квадратный трехчлен выглядит следующим образом:

[math]\sigma_\xi ^2t^2+2Cov(\eta,\xi)t+\sigma_\eta ^2 \geqslant 0[/math]

Из этого неравенства мы видим, что левая сторона может равняться [math]0[/math] только тогда, когда многочлен имеет двойной корень (т.е. график касается оси [math]x[/math] в одной точке), что может быть только при нулевом дискриминанте. Таким образом, дискриминант всегда должен быть не положительным, что означает:

[math] 4Cov^2(\eta,\xi)-4\sigma_\eta ^2\sigma_\xi ^2 \leqslant 0[/math]

[math]Cov^2(\eta,\xi) \leqslant \sigma_\eta ^2\sigma_\xi ^2[/math]

[math]Cov^2(\eta,\xi) \leqslant \mathrm{D}[\eta] \cdot \mathrm{D}[\xi][/math]

что и требовалось доказывать.
[math]\triangleleft[/math]

Ссылки