Счетно-нормированные пространства

Материал из Викиконспекты
Перейти к: навигация, поиск
Эта статья находится в разработке!

<wikitex> $C^p [a; b]$ — пространство непрерывных на $[a; b]$ функций, первые $p$ производных которых также непрерывны. $\| f \| = \sum\limits_{k=0}^p \max\limits_{t \in [a; b]} | f^{(k)}(t)|$

$ \| f - g \| \le \varepsilon$ — равномерная близость $k$-тых производных, так как получаем, что $\max\limits_{[a; b]} | f^{(k)}(t) - g^{(k)}(t)| < \varepsilon$.

Для $C^{\infty} [a; b]$ эта формула не выполняется.


Определение:
Полунорма — норма, которая может равняться нулю на ненулевых элементах пространства.


Определение:
Пусть $X$ — линейное пространство. Тогда если существует счётное множество $p_1 \dots p_n \dots$ полунорм, такое, что для $x \in X$ из того, что $\forall k: p_k(x) = 0$ следует, что $x = 0$, то $X$ называют счетно-нормированным пространством


Пример:

  • $X = C^{(\infty)}[a; b]$, $p_n(x) = \max\limits_{t \in [a; b]} |x^{(n)}(t)|$
Утверждение:
Счетно-нормированные пространства можно метризовать как $\mathbb{R}^{\infty}$: $\rho(x, y) = \sum\limits_{n=1}^{\infty} {1 \over 2^n} {p_n(x - y) \over 1 + p_n(x - y)}$.
[math]\triangleright[/math]
  1. Очевидно, $\rho(x, x) \ge 0$, рассмотрим, когда $\rho(x, y) = 0$, это значит, что $\forall n: p_n(x - y) = 0$, по определению счетно-нормированного пространства это означает, что $x - y = 0 \implies x = y$.
  2. Очевидно
  3. Проверяется аналогично доказательства метризуемости $R^\infty$, рассмотрим функцию $f(t) = \frac{t}{1 + t}$, для нее выполняется $f(t_1) < f(t_2)$ при $t_1 < t_2$ и $f(t_1 + t_2) < f(t_1) + f(t_2)$ для всех $t_1, t_2 > 0$. Рассмотрим каждое $p_n(x - z) = p_n((x - y) + (y - z)) \le p_n(x - y) + p_n(y - z)$. Тогда $f(p_n(x - z)) \le f(p_n(x - y) + p_n(y - z)) \le f(p_n(x - y)) + f(p_n(y - z))$. Тогда и $\sum\limits_n \frac{1}{2^n} \frac{p_n(x - z)}{1 + p_n(x - z)} \le \sum\limits_n \frac{1}{2^n} \frac{p_n(x - y)}{1 + p_n(x - y)} + \sum\limits_n \frac{1}{2^n} \frac{p_n(y - z)}{1 + p_n(y - z)}$, что и требовалось доказать.
[math]\triangleleft[/math]


Определение:
$x_n$ сходится к $x$ по системе полунорм $\{p_m\}$, если $p_m(x_n - x) \to 0$ при всех $m$.
Две системы полунорм эквивалентны, если они порождают одну и ту же сходимость.


Единственность предела гарантирована: если $x' = \lim\limits_{n \to \infty} x_n$, все $p_m(x' - x_n) \to 0$, $p_m(x - x') \le p_m(x - x_n) + p_m(x' - x_n)$, то есть при стремлении $n$ к бесконечности, $p_m(x - x')$ стремится к нулю и $x = x'$.


Заметрим, что нормированные пространства являются частным случаем счетно-нормированных, но обратное в общем случае неверно, каковым вопросом мы и займемся, то есть существует ли норма, сходимость в которой эквивалентна сходимости по системе полунорм? Если такая норма есть, то говорят, что данное счетно-нормированное пространство нормируемо.


Определение:
Система полунорм $\{p_n\}$ называется монотонной, если $\forall n \forall x \in X: p_n(x) \le p_{n+1}(x)$.


Можно считать, что система полунорм всегда удовлетворяет условию монотонности, так как произвольную систему $\{ p_n \}$ можно преобразовать в $q_n = \sum\limits_{k=1}^n p_k$, которая определяет ту же сходимость, что и исходная (видимо, это очевидно)


Определение:
Полунорма $q$ мажорирует полунорму $p$, если $\exists C \forall x \in X: p(x) \le C q(x)$.
Пусть заданы системы $\{p_n\}, \{q_n\}$ на $X$, тогда $\{q_n\}$ мажорирует $\{p_n\}$ если каждая полунорма из $\{p_n\}$ мажорируется какой-то полунормой из $\{q_n\}$.


Утверждение:
Две монотонные системы полунорм эквивалентны тогда и только тогда, когда они мажорируют друг друга.
[math]\triangleright[/math]

В обратную сторону: рассмотрим любую полунорму $p_m$: по мажорируемости, $\exists q_k \exists M: p_m(x_n - x) \le M q_k(x_n - x)$, но $q_k(x_n - x) \to 0$ по сходимости $x_n$ по системе полунорм $q$. Абсолютно симметрично для случая, когда $p$ мажорирует $q$.

В прямую сторону: пусть системы $p$ и $q$ эквивалентны. Установим, что $q$ мажорирует $p$, то что $p$ мажорирует $q$ доказывается аналогично. Докажем от противного: пусть существует $p_{M}$, не мажорируемая ни одной полунормой из $q$, то есть $\forall n \in \mathbb{N} \exists x_n \in X: p_M(x_n) > n q_n(x_n)$. По гомогенности полунормы, если вместо $x_n$ взять $y_n = {x_n \over p_M(x_n)}$, неравенство все еще будет соблюдаться, а норма $p_M(y_n)$ будет равна $1$, то есть получили $1 > n q_n(y_n)$ и последовательность $y_n$ по полунорме $p_M$ не сходится к 0.

Покажем, что $y_n \to 0$ по полунормам системы $q$, то есть $\forall m: q_m \xrightarrow[n \to \infty]{} 0$: для каждого конкретного $m$ возьмем члены $y$ начиная с $m$-того элемента, тогда $\forall n \ge m: q_m(y_n) \le q_n(y_n)$ (это по монотонности) $\le {1 \over n}$ (по уже доказанному), устремив $n \to \infty$ получаем, что каждая конкретная полунорма стремится к нулю, то есть по системе $p$ последовательность $y_n$ не сходится, а по $q$ — сходится, противоречие.
[math]\triangleleft[/math]


Определение:
Полунорма $p_n$ в системе $p$ существенна, если она не мажорируется ни одной из полунорм этой системы с меньшими чем $n$ номерами.


Теорема (критерий нормируемости счетно-нормированного пространства):
Пусть $X$ — счетное-нормированное пространство по монотонной системе полунорм $p$. Оно нормируется тогда и только тогда, когда в системе $p$ конечное число существенных полунорм.
Доказательство:
[math]\triangleright[/math]
В прямую сторону: пусть $X$ нормируемо нормой $\
[math]\triangleleft[/math]


</wikitex>