Материал из Викиконспекты
- Определение МП, замыкание в МП.
- Принцип вложенных шаров в полном МП.
- Теорема Бэра о категориях.
- Критерий компактности Хаусдорфа в МП.
- Пространство [math]R^{\infty}[/math] : метрика, покоординатная сходимость.
- Норма в линейном множестве, определение предела по норме, арифметика предела.
- Эквивалентность норм в конечномерном НП.
- Замкнутость конечномерного линейного подмножества НП.
- Лемма Рисса о почти перпендикуляре, пример ее применения.
- Банаховы пространства на примерах [math]C [0,1][/math] и [math]L_p(E)[/math].
- Определение скалярного произведения, равенство параллелограмма, неравенство Шварца.
- Наилучшее приближение в НП в случае конечномерного подпространства.
- Наилучшее приближение в унитарном пространстве, неравенство Бесселя.
- Определение Гильбертова пространства, сепарабельность и полнота.
- Теорема Рисса-Фишера, равенство Парсеваля.
- Наилучшее приближение в [math]H[/math] для случая выпуклого,замкнутого множества, [math]H = H_1 \oplus H_2[/math].
- Счетно-нормированные пространства, метризуемость.
- Условие нормируемости СНТП.
- Функционал Минковского.
- Топология векторных пространств.
- Теорема Колмогорова о нормируемости ТВП.
- Коразмерность ядра линейного функционала.
- Непрерывный линейный функционал и его норма.
- Связь между непрерывностью линейного функционала и замкнутостью его ядра.
- Продолжение по непрерывности линейного функционала со всюду плотного линейного подмножества НП.
- Теорема Хана-Банаха для НП (сепарабельный случай).
- Два следствия из теоремы Хана-Банаха.
- Теорема Рисса об общем виде линейного непрерывного функционала в [math]H[/math].
- Непрерывный линейный оператор и его норма.
- Продолжение линейного оператора по непрерывности.
- Полнота пространства [math]L(X,Y)[/math].
- Теорема Банаха-Штейнгауза.
- Условие замкнутости множества значений линейного оператора на базе априорной оценки решения операторного уравнения.
- Условие непрерывной обратимости лин. оператора.
- Теорема Банаха о непрерывной обратимости [math]I-C[/math].
- Лемма о множествах [math]X_n = {\|Ax\| \lt n \|x\|}[/math].
- Теорема Банаха об обратном операторе.
- Теорема о замкнутом графике.
- Теорема об открытом отображении.
- Теорема о резольвентном множестве.
- Теорема о спектральном радиусе.
- Аналитичность резольвенты.
- Непустота спектра ограниченного оператора.