Компактный оператор

Материал из Викиконспекты
Перейти к: навигация, поиск


Определение:
Линейный ограниченный оператор [math] A : X \to Y [/math] называется компактным,

если [math] A [/math] переводит любое ограниченное множество из [math] X [/math]

в относительно компактное множество из [math] Y [/math].


TODO: определение относительно компактного множества

Из определения ясно, что мы получаем усиление ограниченности, так как любое относительно компактное множество — ограничено.

Пример

Рассмотрим пространство [math] C[0,1] [/math]. Пусть [math] K(u, v) [/math] — непрерывно на [math] [0,1]\times[0,1] [/math] и ограничено: [math] | K(t,s) | \leq M [/math].

[math] A(x,t) = \int\limits_0^1 K(t,s) x(s) ds [/math], где [math] x(s) \in C[0,1] [/math].

[math] A(x,t) \in C[0,1] [/math]. Зададим норму [math] \| x \| = \max\limits_{s \in [0,1]} | x(s) | \implies |x(s)| \leq \| x \| [/math]

[math] | A(x,t) | \leq M \cdot \| x \| [/math]

[math] \| A(x,t) \| \leq M \cdot \| x \| [/math]