Определение: |
Линейный ограниченный оператор [math] A : X \to Y [/math] называется компактным,
если [math] A [/math] переводит любое ограниченное множество из [math] X [/math]
в относительно компактное множество из [math] Y [/math]. |
TODO: определение относительно компактного множества
Из определения ясно, что мы получаем усиление ограниченности, так как любое относительно компактное множество — ограничено.
Пример
Рассмотрим пространство [math] C[0,1] [/math].
Пусть [math] K(u, v) [/math] — непрерывно на [math] [0,1]\times[0,1] [/math] и ограничено: [math] | K(t,s) | \leq M [/math].
[math] A(x,t) = \int\limits_0^1 K(t,s) x(s) ds [/math], где [math] x(s) \in C[0,1] [/math].
[math] A(x,t) \in C[0,1] [/math]. Зададим норму [math] \| x \| = \max\limits_{s \in [0,1]} | x(s) | \implies |x(s)| \leq \| x \| [/math]
[math] | A(x,t) | \leq M \cdot \| x \| [/math]
[math] \| A(x,t) \| \leq M \cdot \| x \| [/math]
Критерий проверки компактности
Произведение компактных операторов
TODO: к чему относиться следующий абзац???
[math] T \subset C[0,1] [/math] — относительно компактное [math]\iff[/math]
- [math] \forall x \in T : \|x\| \leq M [/math]
- [math] \forall \varepsilon \gt 0 \ \exists \delta \gt 0 : | t'' - t' | \lt \delta \implies \forall x \in T : | x(t') - x(t'') | \lt \varepsilon [/math] — равностепенная непрерывность.
Утверждение: |
[math] A \in \mathcal{L} (X,Y), ~ B \in \mathcal{L} (Y,Z) [/math]
[math] C = B \cdot A [/math] (произведение, суперпозиция).
- Если [math] B [/math] — ограниченный, [math] A [/math] — компактный, то [math] C [/math] — компактный.
- Если [math] B [/math] — компактный, [math] A [/math] — ограниченный, то [math] C [/math] — компактный.
|
[math]\triangleright[/math] |
TODO: доказательство |
[math]\triangleleft[/math] |
Следствие
Если [math] B [/math] — компактный оператор, то он не может быть непрерывно обратимым.
От противного: пусть [math] \exists B^{-1} \implies I = B \cdot B^{-1} [/math] — компактный по доказанному утверждению,
что невозможно в бесконечномерном случае.
Утверждение: |
[math] A [/math] — компактный [math] \implies R(A) [/math] — сепарабельно, то есть в [math] R(A) [/math] существует всюду плотное подмножество. |
[math]\triangleright[/math] |
[math] X = \bigcup\limits_{n=1}^{\infty} V_n, \quad V_n = { x \mid \| x \| \lt b } [/math] — счетное объединение шаров.
[math] R(A) = A (X) = \bigcup\limits_{n=1}^{\infty} A(V_n) [/math]
[math] A(V_n) [/math] — относительно компактно.
По теореме Хаусдорфа
TODO: добавить ссылку на теорему Хаусдорфа любое относительно компактное множество сепарабельно.
Счетное объединение сепарабельных множеств — сепарабельно, значит [math] R(A) [/math] — сепарабельно. |
[math]\triangleleft[/math] |